Understanding the molecular mechanisms of aging in vertebrates is a major challenge of modern biology and biomedical science. This is due, in part, to the complexity of the aging process and its multifactorial nature, the paucity of animal models that lend themselves to unbiased high-throughput screening for aging phenotypes, and the difficulty of predicting such phenotypes at an early age. We suggest that the zebrafish genetic model offers a unique opportunity to fill in this gap and contributes to advances in biological and behavioral gerontology. Our recent studies demonstrated that this diurnal vertebrate with gradual senescence is an excellent model in which to study age-dependent changes in musculoskeletal and eye morphology, endocrine factors, gene expression, circadian clock, sleep and cognitive functions. Importantly, we have also found that the presence of a senescence-associated biomarker ('senescence-associated beta-galactosidase') can be documented during early zebrafish development and is predictive of premature aging phenotypes later in adult life. The availability of mutant 'genotypes' with identified aging 'phenotypes' in zebrafish, in combination with a wealth of information about zebrafish development and genetics, and the existence of multiple mutant and transgenic lines, should significantly facilitate the use of this outstanding vertebrate model in deciphering the mechanisms of aging, and in developing preventive and therapeutic strategies to prolong the productive life span ('health span') in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820570 | PMC |
http://dx.doi.org/10.1159/000228892 | DOI Listing |
Unlabelled: During vertebrate development, the heart primarily arises from mesoderm, with crucial contributions from cardiac neural crest cells that migrate to the heart and form a variety of cardiovascular derivatives. Here, by integrating bulk and single cell RNA-seq with ATAC-seq, we identify a gene regulatory subcircuit specific to migratory cardiac crest cells composed of key transcription factors and . Notably, we show that cells expressing the canonical neural crest gene are essential for proper cardiac regeneration in adult zebrafish.
View Article and Find Full Text PDFZebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).
View Article and Find Full Text PDFFront Immunol
January 2025
Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan.
The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.
View Article and Find Full Text PDFVan der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.
View Article and Find Full Text PDFLife Sci
January 2025
TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:
Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!