Three wetland macrophytes, Sesbania herbacea, Bidens frondosa, and Eclipta prostrata, were exposed (0.4-1,000-ppb nominal concentrations) to the antimicrobial triclosan for 28 d in a flow-through system. Sesbania herbacea had decreased seed germination at the 100-ppb exposure level at days 7, 14, and 21, and B. frondosa germination was reduced at the 1,000-ppb exposure level at day 7. Eclipta prostrata germination was unaffected. Seedling effects monitored were total fresh weight, shoot and root fresh weights, root length, and root surface area. Root metrics were most affected by exposure. Total root length was diminished at all exposure levels in S. herbacea and B. frondosa and at the 10-ppb and higher concentrations for E. prostrata. Root surface area decreased at all exposure levels in B. frondosa and at the 10-ppb level and above in S. herbacea and E. prostrata. Root and shoot bioconcentration factors (BCFs) were estimated for S. herbacea and B. frondosa. While BCFs were low in shoots of both species and roots of S. herbacea (<10), they were elevated in B. frondosa roots (53-101). Methyl-triclosan was formed in the system and accumulated in shoot and root tissues of S. herbacea to concentrations that exceeded those of the parent compound. However, methyl-triclosan was nontoxic in an Arabidopsis thaliana enoyl-acyl carrier protein reductase (the putative enzymatic target of triclosan) assay and did not appear to contribute to the effects of exposure. Two of the three plant species assessed exhibited reduced root systems at environmentally relevant concentrations, raising the concern that wetland plant performance could be compromised in constructed wetlands receiving wastewater treatment plant discharges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1897/08-566.1 | DOI Listing |
Int J Mol Sci
April 2019
Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
Sci Total Environ
March 2013
Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
In terrestrial ecosystems, plant growth, plant community structure, and ultimately the ecosystem services provided by plants are dependent on the presence and composition of below ground arbuscular mycorrhizal (AM) fungal communities. AM fungi form obligate symbioses with plants providing nutrients to their host plants in exchange for photosynthates. While AM have been found in most wetland ecosystems, the effects of urban contaminants on AM associations are largely unknown.
View Article and Find Full Text PDFEnviron Toxicol Chem
December 2009
University of North Texas, Department of Biological Sciences, Institute of Applied Sciences, Denton, TX 76203, USA.
Three wetland macrophytes, Sesbania herbacea, Bidens frondosa, and Eclipta prostrata, were exposed (0.4-1,000-ppb nominal concentrations) to the antimicrobial triclosan for 28 d in a flow-through system. Sesbania herbacea had decreased seed germination at the 100-ppb exposure level at days 7, 14, and 21, and B.
View Article and Find Full Text PDFJ Agric Food Chem
March 2008
Southern Weed Science Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 350, Stoneville, Mississippi 38776, USA.
Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates.
View Article and Find Full Text PDFArch Microbiol
December 2003
Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Carpio y Plan de Ayala S/N, México D.F., México.
Forty-six Mesorhizobium strains associated with the leguminous plants Leucaena leucocephala and Sesbania herbacea in an uncultivated Mexican field were characterized using a polyphasic approach. The strains were identified as Mesorhizobium plurifarium based upon the close relationships with the reference strains for this species in PCR-based restriction fragment length polymorphism analyses, sequencing of 16S rRNA genes, multilocus enzyme electrophoresis, and DNA-DNA hybridization. Although the strains isolated from both plants formed the same group in multilocus enzyme electrophoresis and cross-nodulations were observed in the laboratory, different electrophoretic types were obtained from the two plants grown in natural soils, indicating the existence of a preferable association between the plants and the rhizobia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!