Deprotonation mechanism of new antihypertensive piperidinylmethylphenols: a combined experimental and theoretical study.

J Phys Chem B

Departamento de Química, Area de Química Analítica, Universidad Autónoma Metropolitana-Iztapalapa, Ap. Postal 55-534, San Rafael Atlixco 186. Col. Vicentina, 09340 México, D.F. Mexico.

Published: August 2009

Four new antihypertensive piperidinylmethylphenol compounds were synthesized for their potential antihypertensive and antiarhythmic properties. The pKa values were determined experimentally, with the aid of the program SQUAD, by capillary zone electrophoresis (CZE) at T=298.15 K and 0.015 M ionic strength (I=0.05 M) and by UV spectrophotometry at pseudophysiological conditions (T=310.15 K and I=0.15 M), obtaining good agreement between the values determined with both techniques. A theoretical study was followed in order to propose a deprotonation mechanism for each compound.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp904474mDOI Listing

Publication Analysis

Top Keywords

deprotonation mechanism
8
theoretical study
8
values determined
8
mechanism antihypertensive
4
antihypertensive piperidinylmethylphenols
4
piperidinylmethylphenols combined
4
combined experimental
4
experimental theoretical
4
study antihypertensive
4
antihypertensive piperidinylmethylphenol
4

Similar Publications

Mechanistic Studies on the Gold-Catalyzed Intramolecular Hydroalkylation of Ynamides to Indenes.

ACS Omega

December 2024

Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium.

An in-depth experimental and computational study to rationalize the mechanism underlying the gold-catalyzed intramolecular hydroalkylation of ynamides to indenes is reported. Evaluating the reactivity of a set of deuterated ynamides and gold complexes allowed to get valuable insights into the mechanism of this reaction, while DFT calculations allowed to determine a plausible reaction pathway for this unprecedented transformation. This pathway involves the activation of the ynamide followed by a [1,5]-hydride shift from the highly reactive, in situ generated keteniminium ion, and a subsequent cyclization before deprotonation followed by a final protodeauration.

View Article and Find Full Text PDF

Understanding the chemical and physical mechanisms at play in 2D materials growth is critical for effective process development of methods such as chemical vapor deposition (CVD) as a toolbox for processing more complex nanostructures and 2D materials. A combination of density functional theory and microkinetic modeling is employed to comprehensively investigate the reaction mechanism governing the epitaxial growth of hexagonal boron nitride (hBN) on Ru(0001) from borazine. This analysis encompasses four key stages prior to the formation of the complete hBN overlayer: (i) adsorption, diffusion and deprotonation of borazine, (ii) dimerization and microkinetic modeling (iii) stability of larger borazine polymers and (iv) formation of nanoporous intermediates.

View Article and Find Full Text PDF

Deprotonation of 8-Oxo-7,8-dihydroadenine Radical Cation in Free and Encumbered Context: A Theoretical Study.

ACS Omega

December 2024

State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.

Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA) in both free and encumbered context by calculating the p value and mapping the energy profiles.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Phase Engineering Facilitates O-O Coupling via Lattice Oxygen Mechanism for Enhanced Oxygen Evolution on Nickel-Iron Phosphide.

J Am Chem Soc

December 2024

College of Materials, Institute of Artificial Intelligence, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.

Nickel-iron-based catalysts are recognized for their high efficiency in the oxygen evolution reaction (OER) under alkaline conditions, yet the underlying mechanisms that drive their superior performance remain unclear. Herein, we revealed the molecular OER mechanism and the structure-intermediate-performance relationship of OER on a phosphorus-doped nickel-iron nanocatalyst (NiFeP). NiFeP exhibited exceptional activity and stability with an overpotential of only 210 mV at 10 mA cm in 1 M KOH and a cell voltage of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!