With an aging population the frequency of postmenopausal fractures is increasing. Methods to enhance the repair of osteoporotic bone repair therefore become more important to reduce the society burden of care. We asked if absorbable collagen sponges containing recombinant human bone morphogenetic protein-2 (rhBMP-2) have the potential to enhance bone repair. We randomly assigned 40 rats into the ovariectomy and sham operation groups. A segmental defect was created in the right tibia 12 weeks after ovariectomy. rhBMP-2-containing absorbable collagen sponges were implanted into the defect in half of the animals in each group. We analyzed radiographs and histological sections and performed three-point bending tests to assess repair. Radiological scores in the rhBMP-2 applied rats were higher than those in controls at the end of 8 weeks after tibial osteotomy. The specimens failed under higher loads in the rhBMP-2-applied groups and histology revealed a higher fracture healing score, including callus formation, bone union, marrow changes, and cortex remodeling. We observed no adverse tissue responses such as fibrous connective tissue formation and inflammatory cellular infiltration. rhBMP-2 in absorbable collagen sponges enhanced bone repair in segmental tibial defects of ovariectomized rats. The sponges with rhBMP-2 appeared to enhance bone repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772906 | PMC |
http://dx.doi.org/10.1007/s11999-009-1004-6 | DOI Listing |
Orthop Surg
January 2025
Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.
Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.
View Article and Find Full Text PDFJ Orthop
August 2025
University of Alabama at Birmingham, Department of Orthopaedic Surgery, Birmingham, AL, USA.
Purpose: This study aims to compare the biomechanical performance of elastic and static suture-based cerclage systems to traditional screw constructs in the setting of modeled glenoid bony augmentation.
Methods: Biomechanical testing was conducted on polyurethane cellular foam blocks modeling a 20 % glenoid defect repaired with a coracoid graft. Constructs consisted of an elastic suture-based cerclage, static suture-based cerclage, and a two-screw construct.
J Stem Cells Regen Med
October 2024
Mansoura University, Faculty of Science, Zoology department, Mansoura, Dakahlia, Egypt.
In recent years, bone marrow derived mesenchymal stem cells (BM-derived MSCs) have emerged as a powerful cell-based therapy for various diseases, including male infertility. Demonstrating the efficiency of BM-derived MSCs transplantation by different routes of injection to home and repair testis of busulfan-induced azoospermic rats. In the present study, rat BM-derived MSC was isolated and characterized for mesenchymal &hematopoietic markers using flow-cytometry.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.
Objectives: Platelet concentrates (PCs), which are blood products that are abundant in platelets and growth factors, have become pivotal in treating maxillofacial tissue lesions due to their capacity for promoting bone and soft tissue recovery. This review will provide some recent progress of the use of platelet concentrates to treat lesions on maxillofacial tissues.
Subjects: We reviewed the mechanisms by which PCs promote wound healing and tissue recovery and summarized the application of PCs in the treatment of lesions on maxillofacial tissues, including medication-related osteonecrosis of the jaw, post-extraction wound healing, implant surgery, temporomandibular joint diseases, and periodontal tissue restoration.
Regen Biomater
November 2024
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.
A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!