A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Requirement for the N-terminal coiled-coil domain for expression and function, but not subunit interaction of, the ADPR-activated TRPM2 channel. | LitMetric

Requirement for the N-terminal coiled-coil domain for expression and function, but not subunit interaction of, the ADPR-activated TRPM2 channel.

J Membr Biol

Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK.

Published: July 2009

Transient receptor potential melastatin 2 (TRPM2) proteins form multiple-subunit complexes, most likely homotetramers, which operate as Ca2+-permeable, nonselective cation channels activated by intracellular ADP-ribose (ADPR) and oxidative stress. Each TRPM2 channel subunit is predicted to contain two coiled-coil (CC) domains, one in the N-terminus and the other in the C-terminus. Our recent study has shown that the C-terminal CC domain plays an important, but not exclusive, role in the TRPM2 channel assembly. This study aimed to examine the potential role of the N-terminal CC domain. Domain deletion dramatically reduced protein expression and abolished ADPR-evoked currents but did not alter the subunit interaction. Deletion of both CC domains strongly attenuated the subunit interaction, confirming that the C-terminal CC domain is critical in the subunit interaction. Glutamine substitutions into individual hydrophobic residues at positions a and d in the heptad repeats to disrupt the CC formation had no effect on protein expression, subunit interaction, or ADPR-evoked currents. Mutation of Ile(658) to glutamine, which did not perturb the CC formation, decreased ADPR-evoked currents without affecting protein expression, subunit interaction, or membrane trafficking. These results collectively suggest the requirement for the N-terminal CC domain for protein expression and function, but not subunit interaction, of the TRPM2 channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733183PMC
http://dx.doi.org/10.1007/s00232-009-9190-4DOI Listing

Publication Analysis

Top Keywords

subunit interaction
28
trpm2 channel
16
protein expression
16
adpr-evoked currents
12
requirement n-terminal
8
expression function
8
subunit
8
function subunit
8
c-terminal domain
8
n-terminal domain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!