Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp.

Chem Pharm Bull (Tokyo)

Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drugs and Food, Ocean University of China, Qingdao, P.R. China.

Published: August 2009

Five new diketopiperazine alkaloids, brevicompanines D-H (3-7), together with two known analogs, allo-brevicompanine B (1) and fructigenine B (2), were isolated from a deep ocean sediment derived fungus Penicillium sp. Their structures were established by spectroscopic methods including 2D NMR and chiral HPLC analysis. Compounds 4 and 7 inhibited lipopolysaccharide (LPS)-induced nitric oxide production in BV2 microglial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.57.873DOI Listing

Publication Analysis

Top Keywords

diketopiperazine alkaloids
8
deep ocean
8
ocean sediment
8
sediment derived
8
derived fungus
8
fungus penicillium
8
alkaloids deep
4
penicillium diketopiperazine
4
alkaloids brevicompanines
4
brevicompanines d-h
4

Similar Publications

The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).

View Article and Find Full Text PDF

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF

Targeted isolation of diketopiperazines from a deep-sea derived fungus with anti-neuroinflammatory effects.

Bioorg Chem

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China. Electronic address:

Prenylated indole diketopiperazines represent a diverse array of alkaloids with complex chemical scaffolds and with a wide range of biological activities. Aiming to discover bioactive metabolites with structural novelty, genomic annotation in association with the MS/MS-based molecular networking demonstrated a deep-sea derived fungus Aspergillus puulaauensis F77 containing a profile of diketopiperazines. Targeted separation of the cultured fungus led to the isolation of 19 undescribed austamide-type diketopiperazines namely versicoines A-S.

View Article and Find Full Text PDF

Antioxidative Indole Diketopiperazine Alkaloids from Endophytic Fungi Aspergillus sp. JXC-5.

Chem Biodivers

December 2024

Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China.

Three previously undescribed indole diketopiperazine alkaloids and seventeen known compounds were characterized by Aspergillus sp. JXC-5 by solid fermentation. Their structures were elucidated by spectroscopic methods and high-resolution electrospray ionization mass spectrometry, and the absolute configurations were further confirmed by electronic circular dichroism (ECD), induced CD spectra, and ML_J_DP4 methods.

View Article and Find Full Text PDF

The privileged fused-ring system comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products with potent and diverse biological activities, with some being explored as drug candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!