A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Local combinational variables: an approach used in DNA-binding helix-turn-helix motif prediction with sequence information. | LitMetric

Sequence-based approach for motif prediction is of great interest and remains a challenge. In this work, we develop a local combinational variable approach for sequence-based helix-turn-helix (HTH) motif prediction. First we choose a sequence data set for 88 proteins of 22 amino acids in length to launch an optimized traversal for extracting local combinational segments (LCS) from the data set. Then after LCS refinement, local combinational variables (LCV) are generated to construct prediction models for HTH motifs. Prediction ability of LCV sets at different thresholds is calculated to settle a moderate threshold. The large data set we used comprises 13 HTH families, with 17 455 sequences in total. Our approach predicts HTH motifs more precisely using only primary protein sequence information, with 93.29% accuracy, 93.93% sensitivity and 92.66% specificity. Prediction results of newly reported HTH-containing proteins compared with other prediction web service presents a good prediction model derived from the LCV approach. Comparisons with profile-HMM models from the Pfam protein families database show that the LCV approach maintains a good balance while dealing with HTH-containing proteins and non-HTH proteins at the same time. The LCV approach is to some extent a complementary to the profile-HMM models for its better identification of false-positive data. Furthermore, genome-wide predictions detect new HTH proteins in both Homo sapiens and Escherichia coli organisms, which enlarge applications of the LCV approach. Software for mining LCVs from sequence data set can be obtained from anonymous ftp site ftp://cheminfo.tongji.edu.cn/LCV/freely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761287PMC
http://dx.doi.org/10.1093/nar/gkp628DOI Listing

Publication Analysis

Top Keywords

local combinational
16
data set
16
lcv approach
16
motif prediction
12
combinational variables
8
approach
8
prediction
8
sequence data
8
hth motifs
8
hth-containing proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!