Background: Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism.
Results: The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC) genes (responsible for fumarate addition to toluene) and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH) are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively).
Conclusion: Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species. Examples of recent gene duplication events in signaling as well as dioxygenase clusters are present, indicating selective gene family expansion as a relatively recent event in D. aromatica's evolutionary history. Gene families that constitute metabolic cycles presumed to create D. aromatica's environmental 'foot-print' indicate a high level of diversification between its predicted capabilities and those of its close relatives, A. aromaticum str EbN1 and Azoarcus BH72.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907700 | PMC |
http://dx.doi.org/10.1186/1471-2164-10-351 | DOI Listing |
The plant shikimate pathway directs a significant portion of photosynthetically assimilated carbon into the downstream biosynthetic pathways of aromatic amino acids (AAA) and aromatic natural products. 3-Deoxy-d--heptulosonate 7-phosphate (DAHP) synthase (hereafter DHS) catalyzes the first step of the shikimate pathway, playing a critical role in controlling the carbon flux from central carbon metabolism into the AAA biosynthesis. Previous biochemical studies suggested the presence of manganese- and cobalt-dependent DHS enzymes (DHS-Mn and DHS-Co, respectively) in various plant species.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.
View Article and Find Full Text PDFNat Commun
January 2025
Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China; School of Clinical Medicine, Chengdu University, Chengdu, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China. Electronic address:
Carbon neutrality of bioactive materials is vital in promoting sustainable development for human society. Polyhydroxyalkanoates (PHAs) is a class of typical carbon-cycle bio-polyesters synthesized by microorganisms using sugars, organic acids, and even carbon dioxide. PHAs first degrade into 3-hydroxybutyrate (3HB) before further breaking down into carbon dioxide and water, aligning with carbon-neutral goals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China. Electronic address:
Lignin, as the largest renewable aromatic resource, has significant opportunities for producing high-value products via catalytic depolymerization. However, its complex structure and stable chemical bonds present challenges to its transformation. This study explores the catalytic depolymerization of lignin to aromatic monomers by means of Dawson-type phosphomolybdovanadate polyoxometalates (POMs), understanding the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!