Background: MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression at posttranscriptional level. H. pylori is a major human pathogenic bacterium in gastric mucosa. To date, the role of miRNAs in response to H. pylori infection has not been explored.
Methods: The expression profile of cellular miRNAs during H. pylori infection was analyzed by using microarray and quantitative reverse-transcriptase polymerase chain reaction. The potential target of miR-155 was identified by luciferase assay and Western blot. Promoter analysis and inhibitor experiment were used to investigate the pathway involved in the induction of miR-155. Examination of miR-155 function was performed by overexpression and inhibition of miR-155.
Results: H. pylori was able to increase the miR-155 expression in gastric epithelial cell lines and gastric mucosal tissues, and nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) pathway were required for the induction of miR-155. miR-155 may down-regulate IkappaB kinase epsilon, Sma- and Mad-related protein 2 (SMAD2), and Fas-associated death domain protein. Furthermore, the overexpression of miR-155 negatively regulated the release of interleukin-8 and growth-related oncogene-alpha.
Conclusions: This study provides the first description of increased expression of miR-155 in H. pylori infection, and miR-155 may function as novel negative regulator that help to fine-tune the inflammation response of H. pylori infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/605443 | DOI Listing |
Rev Gastroenterol Peru
January 2025
Infectious Diseases and Cancer Research Group, Centro de Investigaciones Clinicas, Fundacion Hospital San Pedro, Pasto, Nariño, Colombia; Colombian Research Group on Helicobacter pylori, Bogota D.C., Colombia.
The role of Helicobacter pylori in the pathogenesis of peptic ulcers and gastric adenocarcinoma is widely known; however, it is not entirely understood how bacterial infection is closely related to the genesis of follicular gastritis and some types of gastric lymphoma. Diagnosing and pathogenic mechanisms follicular gastritis remain challenging. Therefore, this article aims to examine the role of H.
View Article and Find Full Text PDFRev Gastroenterol Peru
January 2025
Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Helicobacter pylori (H. pylori) is the primary etiological agent of gastric adenocarcinoma, which affects over 60% of the global population, with a significant prevalence in Latin America. Given its impact on the affected population, it is crucial to understand the diagnostic tools available for detecting this infection.
View Article and Find Full Text PDFRev Gastroenterol Peru
January 2024
Unidad Motilidad Digestiva, Clínica San Felipe, Lima, Perú; Servicio de Gastroenterología Clínica Ricardo Palma, Lima, Perú; Universidad Peruana Cayetano Heredia, Lima, Perú.
J Nanobiotechnology
January 2025
School of First Clinical Medical, Ningxia Medical University, Yinchuan, 750004, China.
Background: Helicobacter pylori (H. pylori), a specific bacterium capable of surviving in the acidic environment of the stomach, has been recognized as a group of causative agents of gastric cancer. Therefore, the development of mucosal vaccines against H.
View Article and Find Full Text PDFGastroenterology
January 2025
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
Background & Aims: Screening for, and treating, Helicobacter pylori (H. pylori) in the general population or patients with early gastric neoplasia could reduce incidence of, and mortality from, gastric cancer. We updated a meta-analysis of randomized controlled trials (RCTs) examining this issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!