Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism.

J Cell Biochem

Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.

Published: October 2009

Adult human mesenchymal stem cells (MSCs) hold promise for an increasing list of therapeutic uses due to their ease of isolation, expansion, and multi-lineage differentiation potential. To maximize the clinical potential of MSCs, the underlying mechanisms by which MSC functionality is controlled must be understood. We have taken a deconstructive approach to understand the individual components in vitro, namely the role of candidate "stemness" genes. Our recent microarray gene expression profiling data suggest that interleukin-6 (IL-6) may contribute to the maintenance of MSCs in their undifferentiated state. In this study, we showed that IL-6 gene expression is significantly higher in undifferentiated MSCs as compared to their chondrogenic, osteogenic, and adipogenic derivatives. Moreover, we found that MSCs secrete copious amounts of IL-6 protein, which decreases dramatically during osteogenic differentiation. We further evaluated the role of IL-6 for maintenance of MSC "stemness," using a series of functional assays. The data showed that IL-6 is both necessary and sufficient for enhanced MSC proliferation, protects MSCs from apoptosis, inhibits adipogenic and chondrogenic differentiation of MSCs, and increases the rate of in vitro wound healing of MSCs. We further identified ERK1/2 activation as the key pathway through which IL-6 regulates both MSC proliferation and inhibition of differentiation. Taken together, these findings show for the first time that IL-6 maintains the proliferative and undifferentiated state of bone marrow-derived MSCs, an important parameter for the optimization of both in vitro and in vivo manipulation of MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774119PMC
http://dx.doi.org/10.1002/jcb.22289DOI Listing

Publication Analysis

Top Keywords

mscs
10
bone marrow-derived
8
mesenchymal stem
8
gene expression
8
undifferentiated state
8
msc proliferation
8
il-6
7
interleukin-6 maintains
4
maintains bone
4
marrow-derived mesenchymal
4

Similar Publications

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair.

J Mol Med (Berl)

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.

View Article and Find Full Text PDF

Parasitic plants pose a substantial threat to agriculture as they attack economically important crops. The stem parasitic plant Cuscuta campestris invades the host's stem with a specialized organ referred to as the haustorium, which absorbs nutrients and water from the host. Initiation of the parasitic process in C.

View Article and Find Full Text PDF

Innovative treatment of age-related hearing loss using MSCs and EVs with Apelin.

Cell Biol Toxicol

January 2025

Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.

Utilizing single-cell transcriptome sequencing (scRNA-seq) technology, this study explores the viability of employing mesenchymal stem cells (MSCs) as a therapeutic approach for age-related hearing loss (ARHL). The research demonstrates MSCs' ability to differentiate into inner ear cell subpopulations, particularly hair cells, delivering Apelin via extracellular vesicles (EVs) to promote M2 macrophage polarization. In vitro experiments show reduced inflammation and preservation of hair cell health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!