Measuring the spatiotemporal field of ultrashort Bessel-X pulses.

Opt Lett

Georgia Institute of Technology, School of Physics, 837 State Street, Atlanta, Georgia 30332, USA.

Published: August 2009

We present direct measurements of the spatiotemporal electric field of an ultrashort Bessel-X pulse generated using a conical lens (axicon). These measurements were made using the linear-optical interferometric technique SEA TADPOLE, which has micrometer spatial resolution and femtosecond temporal resolution. From our measurements, both the superluminal velocity of the Bessel pulse and the propagation invariance of the central spot are apparent. We verified our measurements with simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.34.002276DOI Listing

Publication Analysis

Top Keywords

field ultrashort
8
ultrashort bessel-x
8
measuring spatiotemporal
4
spatiotemporal field
4
bessel-x pulses
4
pulses direct
4
measurements
4
direct measurements
4
measurements spatiotemporal
4
spatiotemporal electric
4

Similar Publications

Understanding the dynamics of injected charge carriers is crucial for the analysis of the perovskite light-emitting diode (PeLED) operation. The behavior of the injected carriers largely dictates the external quantum efficiency (EQE) roll-off at high current densities and the temperature dependence of the EQE in PeLEDs. However, limitations such as sample capacitance and external circuitry hinder precise control of carrier injection rates, making it challenging to directly track the dynamics of individual carriers.

View Article and Find Full Text PDF

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Terahertz Nanoscopy on Low-Dimensional Materials: Toward Ultrafast Physical Phenomena.

ACS Appl Mater Interfaces

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).

View Article and Find Full Text PDF

Background: Gonadotropin-releasing hormone agonists (GnRHa) are commonly used in assisted reproduction technology (ART) cycles to prevent a luteinising hormone (LH) surge during controlled ovarian hyperstimulation (COH) prior to planned oocyte retrieval, thus optimising the chances of live birth. We compared the benefits and risks of the different GnRHa protocols used.

Objectives: To evaluate the effectiveness and safety of different GnRHa protocols used as adjuncts to COH in women undergoing ART.

View Article and Find Full Text PDF

Dynamically Assembling Magnetic Nanochains as New Generation of Swarm-Type Magneto-Mechanical Nanorobots Affecting Biofilm Integrity.

Adv Healthc Mater

January 2025

Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 Route de Narbonne, Toulouse, 31400, France.

Article Synopsis
  • Bacterial resistance is increasing, necessitating innovative strategies for effective antibiotic treatment.
  • Ultra-short propelling magnetic nanochains, designed to mimic natural bacterial movement, enhance the efficacy of antibiotics against biofilm-forming Staphylococcus epidermidis by converting resistant bacteria into sensitive ones.
  • These nanochains, activated by a low-intensity rotating magnetic field, operate by mechanically disrupting bacterial structures and working synergistically with antibiotics to completely eliminate biofilms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!