Birefringent particles rotate when trapped in elliptically polarized light. When an infinity corrected oil-immersion objective is used for trapping, rotation of birefringent particles in optical tweezers based on an infinity optical microscope is affected by the spherical aberration at the glass-water interface. The maximum rotation rate of birefringent particles occurs close to the coverslip, and the rotation rate decreases dramatically as the trapped depth increases. We experimentally demonstrate that spherical aberration can be compensated by using a finite-distance-corrected objective to trap and rotate the birefringent particles. It is found that the trapped depth corresponding to the maximum rotation rate is 50 microm, and the rotation rates at deep trapped depths are improved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.48.004397 | DOI Listing |
Biomolecules
January 2025
Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4).
View Article and Find Full Text PDFIn this study, we utilized a discrete point configuration method in conjunction with genetic algorithm (GA) and particle swarm optimization (PSO) to design broadband polarization-maintaining anti-resonant fibers (PM-ARFs). The resulting structure features a confinement loss (CL) below 0.17 dB/m, birefringence of approximately 8.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, China.
The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020, Brazil.
Skin wounds are extremely frequent injuries related to many etiologies. They are a burden on healthcare systems worldwide. Skin dressings are the most popular therapy, and collagen is the most commonly used biomaterial, although new sources of collagen have been studied, especially spongin-like from marine sponges (SPG), as a promising source due to a similar composition to vertebrates and the ability to function as a cell-matrix adhesion framework.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Army Engineering University of PLA, Nanjing, Jiangsu 210000, China.
This paper reports a compact fiber optical electric field (E-field) sensor aiming for the precise detection of transient E-field distributions. Here, a reflective polarization-reciprocal optical path is proposed, which inherently mitigates the temperature-induced birefringence interference of the electro-optical crystal without the need for additional optical elements, thereby facilitating a reduced-size sensing probe. Furthermore, an adaptive particle swarm optimization (A-PSO) algorithm has been utilized for the first time to optimize the insulation structure of the optical E-field sensor, which significantly suppresses field distortion within the sensing region by 50%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!