Proper, graded communication between different cell types is essential for normal development and function. In the nervous system, heart, and for some cancer cells, part of this communication requires signaling by soluble and membrane-bound factors produced by the NRG1 gene. We have previously shown that glial-derived neurotrophic factors activate a rapid, localized release of soluble neuregulin from neuronal axons that can, in turn promote proper axoglial development (Esper, R. M., and Loeb, J. A. (2004) J. Neurosci. 24, 6218-6227). Here we elucidate the mechanism of this localized, regulated release by implicating the delta isoform of protein kinase C (PKC). Blocking the PKC delta isoform with either rottlerin, a selective antagonist, or small interference RNA blocks the regulated release of neuregulin from both transfected cells and primary neuronal cultures. PKC activation also leads to the rapid phosphorylation of the pro-NRG1 cytoplasmic tail on serine residues adjacent to the membrane-spanning segment, that, when mutated markedly reduce the rate of NRG1 activity release. These findings implicate this specific PKC isoform as an important factor for the cleavage and neurotrophin-regulated release of soluble NRG1 forms that have important effects in nervous system development and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785313 | PMC |
http://dx.doi.org/10.1074/jbc.M109.002915 | DOI Listing |
Acta Pharmacol Sin
January 2025
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection.
View Article and Find Full Text PDFNat Genet
January 2025
Institute of Evolution, University of Haifa, Haifa, Israel.
Plant pathogens pose a continuous threat to global food production. Recent discoveries in plant immunity research unveiled a unique protein family characterized by an unusual resistance protein structure that combines two kinase domains. This study demonstrates the widespread occurrence of tandem kinase proteins (TKPs) across the plant kingdom.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage and surrounding tissues. The transcription factor Kruppel-like family factor 9 (KLF9) has been identified as a regulator of tumorigenesis. However, its role in OA is still not fully understood.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.
View Article and Find Full Text PDFNat Commun
January 2025
Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!