Spinal muscle atrophy (SMA) is an autosomal recessive neurodegenerative disease which is characterized by the loss of alpha motor neurons resulting in progressive muscle atrophy. Reduced amount of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene is the cause of SMA. A potential treatment strategy for SMA is to upregulate levels of SMN protein originating from the SMN2 gene compensating in part for the absence of functional SMN1 gene. Although there exists a sizeable literature on SMN2 inducing compounds, there is comparatively less known about the signaling pathways which modulate SMN levels. Here, we report a significant induction in SMN mRNA and protein following p38 activation by Anisomycin. We demonstrate that Anisomycin activation of p38 causes a rapid cytoplasmic accumulation of HuR, a RNA binding protein which binds to and stabilizes the AU-rich element within the SMN transcript. The stabilization of SMN mRNA, rather than transcriptional induction results in an increase in SMN protein. Our demonstration of SMN protein regulation through the p38 pathway and the role of HuR in this modulation may help in the identification and characterization of p38 pathway activators as potential therapeutic compounds for the treatment of SMA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddp352DOI Listing

Publication Analysis

Top Keywords

smn protein
16
smn mrna
12
smn
9
protein
8
rna binding
8
binding protein
8
muscle atrophy
8
smn1 gene
8
p38 pathway
8
p38
5

Similar Publications

The effect of silymarin on diabetes mellitus-induced male rats reproductive impairment: Evidences for role of heat shock proteins 70 and 90.

Pol J Vet Sci

December 2024

Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.

Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.

View Article and Find Full Text PDF

The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.

View Article and Find Full Text PDF

Advances in Disease-Modifying Therapeutics for Chronic Neuromuscular Disorders.

Semin Respir Crit Care Med

December 2024

Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.

Article Synopsis
  • Neuromuscular disorders significantly impact respiratory function by affecting the muscles involved in breathing, leading to high rates of morbidity and mortality, but new therapies have emerged to help combat these issues.
  • Recent FDA-approved treatments for Myasthenia Gravis (MG) and Spinal Muscular Atrophy (SMA) show promising results; therapies targeting the complement system or enhancing SMN protein production improve respiratory function and overall clinical outcomes.
  • While advancements in treating Late-Onset Pompe Disease (LOPD) and Amyotrophic Lateral Sclerosis (ALS) have been made, the latter still presents challenges, with new drugs only managing to slow progression rather than halt it.
View Article and Find Full Text PDF
Article Synopsis
  • The lab has been studying RNA-binding proteins (RBPs) and their complexes (RNPs) since the 1980s, focusing on their roles in regulating gene expression after transcription.* -
  • Research uncovered links between RBPs, specific diseases like fragile X syndrome and spinal muscular atrophy, highlighting the connection between RNA biology and health conditions.* -
  • The findings show that the diverse range of RNAs and RBPs can lead to increased complexity and potential disorders, suggesting a promising area for future research and discoveries in RNA science.*
View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically resistant to SMA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!