Antigen receptor signals rescue B cells from TLR tolerance.

J Immunol

Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.

Published: September 2009

Interactions between innate and adaptive immune receptors are critical for an optimal immune response, but the role played by Ag receptors in modulating innate receptor functions is less clear. TLRs are a family of pattern recognition receptors that play crucial roles in detecting microbial pathogens and subsequent development of immune responses. However, chronic stimulation through TLRs renders immune cells hyporesponsive to subsequent stimulation with TLR ligands, a phenomenon known as TLR tolerance, well characterized in myeloid cells. However, it has not been studied in detail in B lymphocytes. In addition to the BCR, B cells express almost all known TLRs and respond robustly to many TLR ligands. Thus, B cells may receive signals through both TLRs and BCR during an infection and may respond differently to TLR stimulation than myeloid cells. We tested this possibility by stimulating repeatedly through either TLR alone or both TLR and BCR. Prestimulation through TLR7 resulted in reduced B cell proliferation, cytokine production, and IgM secretion upon subsequent TLR7 restimulation. The hyporesponsiveness to TLR7 restimulation was associated with reduced NF-kappaB and MAPK activation and defective c-Jun phosphorylation. However, simultaneous BCR signaling prevented or reversed TLR7 tolerance in both mouse and human B cells. Importantly, BCR signaling also rescued B cells from TLR7-mediated TLR9 tolerance. Additionally, the reversal of TLR7-mediated JNK activation was dependent on PI3K activation. Together these results present a novel mechanism to prevent and reverse TLR tolerance in B cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789010PMC
http://dx.doi.org/10.4049/jimmunol.0900495DOI Listing

Publication Analysis

Top Keywords

tlr tolerance
12
cells
9
tlr
8
tlr ligands
8
myeloid cells
8
tlr7 restimulation
8
bcr signaling
8
tolerance
5
bcr
5
antigen receptor
4

Similar Publications

This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, = 40) and an observation group (Obs, = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each.

View Article and Find Full Text PDF

Viral respiratory infection is associated with significant morbidity and mortality. The diversity of viruses implicated, coupled with their propensity for mutation, ignited an interest in host-directed antiviral therapies effective across a wide range of viral variants. Toll-like receptors (TLRs) are potential targets for the development of broad-spectrum antivirals given their central role in host immune defenses.

View Article and Find Full Text PDF

Background: Allergen-specific immunotherapy (AIT) is so far the only disease-modifying therapy for allergy, resulting in a long-lasting tolerance. However, the existing safety concerns and the need for more efficacious alternatives that shorten the duration of treatment have stimulated research into the development of novel alternatives. Some of these novel alternatives involve modifying allergens with molecules that target innate immunomodulatory receptors to suppress the immune activity of immune cells.

View Article and Find Full Text PDF

Spatiotemporal Nano-Regulator Unleashes Anti-Tumor Immunity by Overcoming Dendritic Cell Tolerance and T Cell Exhaustion in Tumor-Draining Lymph Nodes.

Adv Mater

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Lymph nodes are crucial immune foci as the primary target for cancer immunotherapy. However, the anti-tumor functions of tumor-draining lymph nodes (TDLNs) are critically suppressed by tumors. Here, a novel spatiotemporal nano-regulator is presented, designed to modulate the dendritic cells (DCs) in TDLNs, establishing a supportive niche for immune surveillance.

View Article and Find Full Text PDF

Background: Local priming of the innate immune system with a Toll-like receptor (TLR)2/6 agonist may reduce morbidity and mortality associated with viral respiratory tract infections, particularly for the elderly and those with chronic diseases. The objectives of the present study were to understand the potential of prophylactic treatment with a TLR2/6 agonist as an enhancer of innate immunity pathways leading to accelerated respiratory virus clearance from the upper airways.

Methods: Two randomised, double-blind, placebo-controlled clinical trials were conducted in healthy adult participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!