The NF-kappaB-independent functions of IKK subunits in immunity and cancer.

Trends Cell Biol

Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), GIGA-Signal Transduction, Laboratory of Medical Chemistry, CHU, Sart-Tilman, University of Liege, Belgium.

Published: August 2009

The I kappaB kinase (IKK) complex is involved in transcriptional activation by phosphorylating the inhibitory molecule I kappaB alpha, a modification that triggers its subsequent degradation, enabling activation of nuclear factor kappa B (NF-kappaB). Importantly, recent reports indicate that multiple cytoplasmic and nuclear proteins distinct from the NF-kappaB and I kappaB proteins are phosphorylated by the catalytic subunits of the IKK complex, IKK alpha or IKK beta. Here, I describe how IKK subunits can have crucial roles in allergy, inflammation and immunity by targeting proteins such as SNAP23 and IRF7, but also in cancer by phosphorylating key molecules such as p53, TSC1 and FOXO3a through NF-kappaB-independent pathways. Thus, these recent findings considerably widen the biological roles of these kinases and suggest that a full understanding of the biological roles of IKK alpha and IKK beta requires an exhaustive characterization of their substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2009.05.006DOI Listing

Publication Analysis

Top Keywords

ikk
8
ikk subunits
8
ikk complex
8
ikk alpha
8
alpha ikk
8
ikk beta
8
biological roles
8
nf-kappab-independent functions
4
functions ikk
4
subunits immunity
4

Similar Publications

inhibits -induced inflammatory response through targeting HMGB1 in mouse primary peritoneal macrophages.

Heliyon

January 2025

Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

Background: () is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in infection.

View Article and Find Full Text PDF

Raf Kinase Inhibitor Protein (RKIP) is an important regulator of the MAPK signaling pathway in multicellular eukaryotes. Plasmodium falciparum RKIP (PfRKIP) is a putative phosphatidylethanolamine binding protein (PEBP) that shares limited similarity with Homo sapiens RKIP (HsRKIP). Interestingly, critical components of the MAPK pathway are not expressed in malaria parasites and the physiological function of PfRKIP remains unknown.

View Article and Find Full Text PDF

Asperulosidic acid inhibits the PI3K/Akt/NF-κB pathway to suppress endotoxin-induced uveitis.

Front Med (Lausanne)

January 2025

Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Introduction: Uveitis, a severe inflammatory disease affecting the uvea, is associated with visual impairment and irreversible blindness. Asperulosidic Acid (ASPA), derived from , is known for its notable anti-inflammatory and antioxidant characteristics.

Methods: The present study explored the potential anti-inflammatory effects and the fundamental processes of ASPA by injecting it or a placebo into the vitreous of rats with endotoxin-induced uveitis (EIU).

View Article and Find Full Text PDF

A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2-19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed.

View Article and Find Full Text PDF

Melanoma is an aggressive form of malignancy that originates from melanin-producing cells known as melanocytes underlying the basal layer of the epidermis with a poor prognosis, low survival rates, and limited treatment options. Although several specific and effective systematic strategies for treating melanoma have been established, the underlying molecular mechanism of melanoma progression, mortality and the promising therapeutic options remain elusive. Shikonin (SK), a natural naphthoquinone derived from a medicinal herbaceous plant, has been shown to inhibit the proliferation of several cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!