Objective: To characterize inheritance of homozygous, rare, recessive loss-of-function mutations in surfactant protein-B (SFTPB) or ATP binding cassette, subfamily A, member 3 (ABCA3) genes in newborns with lethal respiratory failure.

Study Design: We resequenced genes from parents whose infants were homozygous for mutations in SFTPB or ABCA3. For infants with only 1 heterozygous parent, we performed microsatellite analysis for chromosomes 2 (SFTPB) and 16 (ABCA3).

Results: We identified 1 infant homozygous for the g.1549C > GAA mutation (121ins2) in SFTPB for whom only the mother was heterozygous and 3 infants homozygous for mutations in ABCA3 (p.K914R, p.P147L, and c.806_7insGCT) for whom only the fathers were heterozygous. For the SP-B-deficient infant, microsatellite markers confirmed maternal heterodisomy with segmental isodisomy. Microsatellite analysis confirmed paternal isodisomy for the 3 ABCA3-deficient infants. Two ABCA3-deficient infants underwent lung transplantation at 3 and 5 months of age, respectively, and 2 infants died. None exhibited any nonpulmonary phenotype.

Conclusions: Uniparental disomy should be suspected in infants with rare homozygous mutations in SFTPB or ABCA3. Confirmation of parental carrier status is important to provide recurrence risk and to monitor expression of other phenotypes that may emerge through reduction to homozygosity of recessive alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794197PMC
http://dx.doi.org/10.1016/j.jpeds.2009.06.006DOI Listing

Publication Analysis

Top Keywords

homozygous mutations
12
uniparental disomy
8
mutations surfactant
8
surfactant protein-b
8
atp binding
8
binding cassette
8
cassette subfamily
8
subfamily member
8
infants homozygous
8
mutations sftpb
8

Similar Publications

Background: Autosomal recessive cutis laxa type 1B (ARCL1B) is an extremely rare disease characterized by severe systemic connective tissue abnormalities, including cutis laxa, aneurysm and fragility of blood vessels, birth fractures and emphysema. The severity of this disease ranges from perinatal death to manifestations compatible with survival. To date, no cases have been reported in the Chinese population.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including , and Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors.

View Article and Find Full Text PDF

Background: The KHDC3L gene encodes a component of the subcortical maternal complex (SCMC). Biallelic mutations in this gene cause 5%-10% of biparental hydatidiform moles (BiHM), and a few maternal deletions in KHDC3L have been identified in women with recurrent pregnancy loss (RPL).

Method: In this study, we had a patient with a history of 10 pregnancy or neonatal losses, including spontaneous abortions, neonatal deaths, and molar pregnancy.

View Article and Find Full Text PDF

Uncovering potential causal genes for undiagnosed congenital anomalies using an in-house pipeline for trio-based whole-genome sequencing.

Hum Genomics

January 2025

Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.

Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.

View Article and Find Full Text PDF

The effects of runs-of-homozygosity on pig domestication and breeding.

BMC Genomics

January 2025

Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.

Background: Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression.

Results: Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!