A PHP Error was encountered

Severity: 8192

Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: helpers/my_audit_helper.php

Line Number: 8900

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8900
Function: str_replace

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3362
Function: formatAIDetailSummary

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of intraventricular mechanical dyssynchrony and prediction of response to cardiac resynchronization therapy: comparison between tissue Doppler imaging and real-time three-dimensional echocardiography. | LitMetric

Objective: We studied the comparability of left ventricular (LV) mechanical dyssynchrony assessment by tissue Doppler imaging (TDI) and real-time three-dimensional echocardiography (RT3DE) in patients with a wide range of LV ejection fractions and different causes of cardiomyopathy. In addition, we evaluated the ability of both techniques to predict response to cardiac resynchronization therapy (CRT).

Methods: A total of 90 patients and 30 healthy volunteers underwent both TDI and RT3DE. A subgroup of 27 patients underwent CRT and were evaluated before and 6 months after implantation. Mechanical dyssynchrony was measured with TDI using the standard deviation of time to peak systolic tissue velocity of 12 LV myocardial segments. With RT3DE, the standard deviation of time from QRS onset to minimal volume of 16 LV subvolumes was assessed. Indicators of response to CRT were a clinical improvement of >or= 1 New York Heart Association functional class, and reverse remodeling defined as a reduction of >or= 15% in LV end-systolic volume at 6 months.

Results: A moderate correlation (r = 0.581, P < .001) was observed between TDI and RT3DE. No significant difference in the presence of mechanical dyssynchrony by TDI and RT3DE was observed (53% vs 48%, respectively). Agreement between techniques was comparable between patients with ischemic and nonischemic cardiomyopathy. However, up to 30% nonagreement between the 2 techniques was found, depending on the severity of LV dysfunction. Of the 27 patients undergoing CRT, clinical response was observed in 70% of patients, whereas reverse remodeling occurred in 63% of patients. All baseline characteristics were similar between responders and nonresponders, except for mechanical dyssynchrony assessed by RT3DE, which was significantly higher in responders compared with nonresponders (10.1% +/- 2.6% vs 5.1% +/- 1.2% for clinical response, P < .001; 10.0% +/- 2.8% vs 6.3% +/- 2.3% for reverse remodeling, P = .001). By applying previously defined cutoff values, receiver operating characteristic curve analysis demonstrated a sensitivity of 58% with a specificity of 50% for TDI and a sensitivity of 95% with a specificity of 87% for RT3DE to predict clinical response to CRT. For prediction of reverse remodeling after CRT, sensitivity and specificity were 59% and 50% for TDI, and 88% and 60% for RT3DE, respectively. The optimal cutoff value for systolic dyssynchrony index by RT3DE of 6.7% yielded a sensitivity of 90% with a specificity of 87% to predict clinical response, and a sensitivity of 88% with a specificity of 70% to predict reverse remodeling.

Conclusion: Marked differences between techniques are found for the presence of mechanical dyssynchrony when current cutoff values are applied, making interchangeability of these techniques uncertain. Assessment of mechanical dyssynchrony by RT3DE might be an appropriate alternative to TDI for accurate prediction of response to CRT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.echo.2009.06.012DOI Listing

Publication Analysis

Top Keywords

mechanical dyssynchrony
28
reverse remodeling
16
clinical response
16
tdi rt3de
12
response crt
12
rt3de
10
dyssynchrony
8
response
8
prediction response
8
response cardiac
8

Similar Publications

Echocardiography in the Assessment of Heart Failure Patients.

Diagnostics (Basel)

December 2024

Division of Cardiology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.

Doppler echocardiography is the corner-stone of non-invasive investigation of patients with a clinical diagnosis of heart failure. It provides an accurate and quantitative assessment of cardiac structure and function. Furthermore, spectral Doppler measurement is an invaluable technique for estimating intracardiac pressures with their crucial value in the optimum management of heart failure patients, irrespective of ejection fraction.

View Article and Find Full Text PDF

Prognostic value of mechanical dyssynchrony in patients with heart failure: a systematic review.

BMC Cardiovasc Disord

November 2024

State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.

Background: Heart failure (HF) significantly impacts quality of life and healthcare systems worldwide. Assessing left ventricular mechanical dyssynchrony (LVMD) is crucial for understanding cardiac function and optimizing treatments like cardiac resynchronization therapy (CRT). Phase analysis using gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has shown promise in predicting outcomes, yet recent comprehensive reviews are lacking.

View Article and Find Full Text PDF

Mechanism and Impact of Left Atrial Dyssynchrony on Long-Term Clinical Outcome During Cardiac Resynchronization Therapy.

JACC Cardiovasc Imaging

November 2024

Institute for Surgical Research, Oslo University Hospital, Oslo, Norway; Division of Cardiovascular and Pulmonary Diseases, Cardiology Department, Oslo University Hospital. Oslo, Norway.

Background: Left bundle branch block (LBBB) causes left atrial (LA) dyssynchrony. It is unknown if LA dyssynchrony impacts long-term prognosis.

Objectives: The purpose of this study was to determine mechanisms of LA dyssynchrony in LBBB and if LA dyssynchrony impacts long-term prognosis.

View Article and Find Full Text PDF

Prognostic significance of phase analysis using SPECT myocardial perfusion imaging in heart failure: a systematic review and meta-analysis.

Int J Cardiovasc Imaging

November 2024

Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Left ventricular mechanical dyssynchrony (LVMD) is an important prognostic factor for heart failure (HF). Phase analysis of myocardial perfusion SPECT is actively being researched to evaluate LVMD. We performed a systematic review and meta-analysis on the prognostic significance of LVMD using gated SPECT in HF patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!