HLA-DM mediates peptide exchange by interacting transiently and repeatedly with HLA-DR1.

Mol Immunol

Graduate Program in Immunology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.

Published: September 2009

The peptide editor HLA-DM (DM) catalyzes the exchange of peptides bound to MHC class II molecules within antigen presenting cells by generating a "peptide-receptive" MHC class II conformation (MHC(receptive)) to which peptides readily bind and rapidly unbind. While recent work has uncovered the determinants of DM recognition and effector functions, the nature of MHC(receptive) and its interaction with DM remains unclear. Here, we show that DM induces but does not stabilize MHC(receptive) in the absence of peptides. We demonstrate that DM is out-competed by certain superantigens, and increasing solvent viscosity inhibits DM-induced peptide association. We suggest that DM mediates peptide exchange by interacting transiently and repeatedly with MHC class II molecules, continually generating MHC(receptive). The simultaneous presence of peptide and DM in the milieu is thus crucial for the efficient generation of specific peptide-MHC class II complexes over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743474PMC
http://dx.doi.org/10.1016/j.molimm.2009.07.001DOI Listing

Publication Analysis

Top Keywords

mhc class
12
mediates peptide
8
peptide exchange
8
exchange interacting
8
interacting transiently
8
transiently repeatedly
8
class molecules
8
peptide
5
hla-dm mediates
4
repeatedly hla-dr1
4

Similar Publications

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3).

View Article and Find Full Text PDF

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa- and , are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both and are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene.

View Article and Find Full Text PDF

Hypoimmune (HIP) allogeneic cell therapeutics hold the promise to allow off-the-shelf treatments for a broad patient population. Our HIP approach includes the depletion of major histocompatibility complex (MHC) class I and II molecules and the overexpression of Cd47. Here, we report the engineering of HIP mice that stably exhibit the HIP phenotype in all cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!