In the 15 years since its discovery anandamide has been implicated in many physiological processes. The signaling pathways mediating many of these processes are now coming to light, particularly in the CNS. The complexity of the cannabinoid system and the identification of many potential other receptors for anandamide have made conclusive evidence of molecular pathways stimulated by this molecule significantly more difficult to achieve. It is becoming obvious that anandamide receptor signal transduction is not a simple process and that many different cascades can be activated depending on a range of both experimental and physiological variables. This chapter explores the signaling pathways activated by anandamide both through the cannabinoid receptors and through other cellular targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0083-6729(09)81004-2 | DOI Listing |
J Dairy Sci
January 2025
Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:
Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil.
Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFCells
December 2024
Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany.
Endocannabinoids have been shown to play a complex role in the pathophysiology of a number of cardiovascular disorders. In the present study, the effects of the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated in human coronary artery smooth muscle cells (HCASMC) and human coronary artery endothelial cells (HCAEC) with regard to potential atheroprotective and anti-inflammatory effects. In HCASMC, AEA showed an inhibitory effect on platelet-derived growth factor-induced migration, but not proliferation, independent of major cannabinoid-activatable receptors (CB, CB, TRPV1), while 2-AG left both responses unaffected.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland. Electronic address:
Due to the increasing prevalence of depressive and anxiety disorders in youth, a growing interest in the endocannabinoid system (ECS) as a potential alternative target point for treatment arised. This study aimed to investigate whether chronic administration of escitalopram reverses behavioral changes induced by maternal separation in male adolescent Wistar rats and explore the corresponding neurochemical changes in the ECS. The pups were separated from their dams for 360 min daily from postnatal day (PND) 2 until PND 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!