Background: Little information is available on the amelioration of boron (B) on aluminum (Al)-induced photosynthesis inhibition. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 4 B levels (2.5, 10, 25 and 50 microM H3BO3) x 2 Al levels (0 and 1.2 mM AlCl3.6H2O). The objectives of this study were to determine how B alleviates Al-induced growth inhibition and to test the hypothesis that Al-induced photosynthesis inhibition can be alleviated by B via preventing Al from getting into shoots.
Results: B had little effect on plant growth, root, stem and leaf Al, leaf chlorophyll (Chl), CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Chl a fluorescence (OJIP) transient and related parameters without Al stress except that root, stem and leaf B increased with increasing B supply and that 50 muM B decreased slightly root dry weight. Al-treated roots, stems and leaves displayed a higher or similar B. B did not affect root Al under Al stress, but decreased stem and leaf Al level. Shoot growth is more sensitive to Al stress than root growth, CO2 assimilation, Chl, Rubisco, OJIP transient and most related parameters. Al-treated leaves showed decreased CO2 assimilation, but increased or similar intercellular CO2 concentration. Both initial and total Rubisco activity in Al-treated leaves decreased to a lesser extent than CO2 assimilation. Al decreased maximum quantum yield of primary photochemistry and total performance index, but increased minimum fluorescence, K-band, relative variable fluorescence at J- and I-steps. B could alleviate Al-induced increase or decrease for all these parameters. Generally speaking, the order of B effectiveness was 25 microM > 10 microM >or= 50 microM (excess B) > 2.5 microM.
Conclusion: We propose that Al-induced photosynthesis inhibition was mainly caused by impaired photosynthetic electron transport chain, which may be associated with growth inhibition. B-induced amelioration of root inhibition was probably caused by B-induced changes in Al speciation and/or sub-cellular compartmentation. However, B-induced amelioration of shoot and photosynthesis inhibition and photoinhibitory damage occurring at both donor and acceptor sides of photosystem II could be due to less Al accumulation in shoots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731759 | PMC |
http://dx.doi.org/10.1186/1471-2229-9-102 | DOI Listing |
Sci Total Environ
December 2024
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, Beijing, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.
Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-g simulation dependent on CO concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUE) and the δC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUE) of three-year tree saplings of Platycladus orientalis (L.
View Article and Find Full Text PDFJ Plant Res
December 2024
Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Department of Plant Sciences, University of California at Davis, Davis, California, USA.
Rubisco, the most prevalent protein on Earth, catalysers both a reaction that initiates C carbon fixation, and a reaction that initiates photorespiration, which stimulates protein synthesis. Regulation of the balance between these reactions under atmospheric CO fluctuations remains poorly understood. We have hypothesised that vascular plants maintain organic carbon-to-nitrogen homoeostasis by adjusting the relative activities of magnesium and manganese in chloroplasts to balance carbon fixation and nitrate assimilation rates.
View Article and Find Full Text PDFFront Plant Sci
December 2024
BIODYNE Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium.
Introduction: The identification of the physiological processes limiting carbon assimilation under water stress is crucial for improving model predictions and selecting drought-tolerant varieties. However, the influence of soil water availability on photosynthesis-limiting processes is still not fully understood. This study aimed to investigate the origins of photosynthesis limitations on potato () during a field drought experiment.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Environmental Engineering, Rajamangala University of Technology Lanna, Chiang Mai, 50300, Thailand.
This study aimed at developing a sustainable waste management from poultry farm by integrating microalgae cultivation with the anaerobic digestion effluent of chicken wastes (ADEC). The analysis was focused on system performance, resource recovery and environmental impact of microalgal biomass-derived added value products. Laboratory-scale of three different systems, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!