Nipah virus (NiV) and Hendra virus (HeV) are the only paramyxoviruses requiring Biosafety Level 4 (BSL-4) containment. Thus, study of henipavirus entry at less than BSL-4 conditions necessitates the use of cell-cell fusion or pseudotyped reporter virus assays. Yet, these surrogate assays may not fully emulate the biological properties unique to the virus being studied. Thus, we developed a henipaviral entry assay based on a beta-lactamase-Nipah Matrix (betala-M) fusion protein. We first codon-optimized the bacterial betala and the NiV-M genes to ensure efficient expression in mammalian cells. The betala-M construct was able to bud and form virus-like particles (VLPs) that morphologically resembled paramyxoviruses. betala-M efficiently incorporated both NiV and HeV fusion and attachment glycoproteins. Entry of these VLPs was detected by cytosolic delivery of betala-M, resulting in enzymatic and fluorescent conversion of the pre-loaded CCF2-AM substrate. Soluble henipavirus receptors (ephrinB2) or antibodies against the F and/or G proteins blocked VLP entry. Additionally, a Y105W mutation engineered into the catalytic site of betala increased the sensitivity of our betala-M based infection assays by 2-fold. In toto, these methods will provide a more biologically relevant assay for studying henipavirus entry at less than BSL-4 conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727953 | PMC |
http://dx.doi.org/10.1186/1743-422X-6-119 | DOI Listing |
mBio
December 2024
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Unlabelled: A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health.
View Article and Find Full Text PDFJ Gen Virol
October 2024
Philipps University Marburg, Institute of Virology, Marburg, Germany.
Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
September 2024
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential.
View Article and Find Full Text PDFACS Appl Bio Mater
June 2024
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States.
The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses.
View Article and Find Full Text PDFJ Integr Neurosci
April 2024
Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
The genome of the Nipah virus (NiV) encodes a variety of structural proteins linked to a diverse array of symptoms, including fevers, headaches, somnolence, and respiratory impairment. In instances of heightened severity, it can also invade the central nervous system (CNS), resulting in more pronounced problems. This work investigates the effects of NiV on the blood-brain barrier (BBB), the vital physiological layer responsible for safeguarding the CNS by regulating the passage of chemicals into the brain selectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!