Background: Gene-based (genic) microsatellites are a useful tool for plant genetics and simple sequence repeat loci can often be found in coding regions of the genome. While EST sequencing can be used to discover genic microsatellites, direct screening of cDNA libraries for repeat motifs can save on overall sequencing costs. The objective of this research was to screen a large cDNA library from and Andean common bean genotype for six di-nucleotide and tri-nucleotide repeat motifs through a filter hybridization approach and to develop microsatellite markers from positive clones.

Results: Robotics were used for high-throughput colony picking and to create a high-density filter of 18,432 double spotted cDNA clones which was followed by hybridization with repeat motif containing probes based on GA, CA, AAT, CAG, CAA and ACG repeats. A total of 1203 positive clones were identified by their addresses and sequenced from 5' ends and if required from 3' ends to confirm repeat motif and length. Out of 886 high quality sequences, 497 had complete microsatellite loci that were not truncated by the sequencing reaction and of these tri-nucleotide repeats were more common than di-nucleotide repeats. Different motifs were found in different frequencies in the 5' and 3' ends of the cDNAs. In a microsatellite development program, primers were designed for 248 SSR loci which were tested on a panel of 18 common bean genotypes to determine their potential as genetic markers finding higher average polymorphism information content for di-nucleotide repeat markers (0.3544) than for tri-nucleotide repeat markers (0.1536).

Conclusion: The present study provides a set of validated gene-based markers for common bean that are derived from G19833, an Andean landrace that is an important source of disease and abiotic stress tolerance which has been used for physical map development and as a mapping parent. Gene-based markers appear to be very efficient at separating divergent wild and cultivated accessions as well as Andean and Mesoamerican gene pools and therefore will be useful for diversity analyses and for comparative and transcript mapping in common bean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091531PMC
http://dx.doi.org/10.1186/1471-2229-9-100DOI Listing

Publication Analysis

Top Keywords

common bean
20
genic microsatellites
8
repeat motifs
8
tri-nucleotide repeat
8
repeat motif
8
repeat markers
8
gene-based markers
8
repeat
7
common
6
markers
6

Similar Publications

Background: Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.

View Article and Find Full Text PDF

Common bean (Phaseolus vulgaris L.) is a crop rich in protein, minerals, and starch. Viruses are a significant limiting factor in increasing the production of legumes, particularly common beans.

View Article and Find Full Text PDF

Characterization of dynamic of the structural changes of legume starches during gelatinization.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

This study investigated the dynamic changes in legume starches (common vetch, mung bean, and pea) during gelatinization. All three starches displayed a similar pattern: water absorption and swelling at lower temperatures (50-65 °C), structural rupture at medium temperatures (65-75 °C), and melting/reorganization at higher temperatures (75-90 °C). Gelatinization likely starts with internal structural dissociation, as evidenced by the weakening of the double helix structure and decreasing order observed throughout the process.

View Article and Find Full Text PDF

Better beans: designer TALE-mediated discovery of common bacterial blight resistance.

J Exp Bot

January 2025

School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.

This article comments on: 2025. A dTALE approach demonstrates that induction of common bean promotes resistance to common bacterial blight. Journal of Experimental Botany , 607–620.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!