The viability of broccoli seeds and functional properties, such as ascorbic acid, carotenoid, chlorophyll, and total phenol contents, of broccoli sprouts grown from irradiated seeds were evaluated. The seeds were irradiated using electron beam and gamma ray at doses up to 8 kGy. High germination percentages (>90%) were observed in seeds irradiated at < or =4 kGy, but the yield ratio and sprout length decreased with increased irradiation dose. Irradiation at > or =6 kGy resulted in curling of the sprout roots. Germinated seeds contained higher amounts of nutrients than raw seeds but the nutritional quality of sprouts decreased during postharvest storage. Radiation treatment hampered the growth of irradiated seeds resulting in underdeveloped sprouts with decreased ascorbic acid, carotenoid, and chlorophyll contents. In addition, the decrease in functional content of sprouts was more substantial in samples grown from high-dose (5 kGy) irradiated seeds than that of the low-dose (1 kGy) treated ones. Seed irradiation did not negatively affect the total phenol content of sprouts. In general, electron beam and gamma irradiation of broccoli seeds showed similar effects on the viability and functional properties of sprouts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1750-3841.2009.01161.x | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, No. 163 Xianlin Road, 210023, Nanjing, CHINA.
Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFTransfus Med
January 2025
Research and Development, Finnish Red Cross Blood Service, Vantaa, Finland.
Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.
Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.
Protein Sci
February 2025
Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!