A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification and characterization of a novel amphioxus dopamine D-like receptor. | LitMetric

Dopamine receptors function to control many aspects of motor control and other forms of behaviour in both vertebrates and invertebrates. They can be divided into two main groups (D(1) and D(2)) based on sequence similarity, ligand affinity and effector coupling. However, little is known about the pharmacology and functionality of dopamine receptors in the deuterostomian invertebrates, such as the cephalochordate amphioxus (Branchiostoma floridae) which has recently been placed as the most basal of all the chordates. A bioinformatic study shows that amphioxus has at least three dopamine D(1)-like receptor sequences. One of these receptors, AmphiD(1)/beta, was found to have high levels of sequence similarity to both vertebrate D(1) receptors and to beta-adrenergic receptors. Here, we report on the cloning of AmphiD(1)/beta from an adult amphioxus cDNA library, and its pharmacological characterization subsequent to its expression in both mammalian cell lines and Xenopus oocytes. It was found that AmphiD(1)/beta has a similar pharmacology to vertebrate D(1) receptors, including responding to benzodiazepine ligands. The pharmacology of the receptor exhibits 'agonist-specific coupling' depending upon the second messenger pathway to which it is linked. Moreover, no pharmacological characteristics were observed to suggest that AmphiD(1)/beta may be an amphioxus orthologue of vertebrate beta-adrenergic receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2009.06295.xDOI Listing

Publication Analysis

Top Keywords

dopamine receptors
8
sequence similarity
8
vertebrate receptors
8
beta-adrenergic receptors
8
receptors
7
amphioxus
5
identification characterization
4
characterization novel
4
novel amphioxus
4
dopamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!