Flexible alignment of small molecules using the penalty method.

J Chem Inf Model

Department of Chemistry and Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea.

Published: August 2009

An efficient flexible alignment method using the penalty method, called FAP, is described. FAP is a pairwise alignment algorithm that matches a flexible sample to a rigid template. It is a pure atom-based 3D method that utilizes the modified SEAL similarity index combined with an energy penalty term. The penalty term, defined as the third power of the ratio of the local strain energy to its target value, enables effective control of energy increase during alignment. The alignment procedure consists of the seed conformer generation, rigid-body alignment, and flexible optimization steps. Both conformation and alignment spaces are efficiently explored by the sparse, random sampling schemes. FAP has been tested with benchmark sets of seven different classes of ligands taken from the literature. In terms of the ability to produce the bioactive overlays, FAP is comparable to, or in some cases better than, other alignment methods. FAP is accurate, objective, fully automated, and fast enough to be used as a tool for virtual screening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci8004463DOI Listing

Publication Analysis

Top Keywords

flexible alignment
8
penalty method
8
penalty term
8
alignment
7
fap
5
flexible
4
alignment small
4
small molecules
4
penalty
4
molecules penalty
4

Similar Publications

Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties.

View Article and Find Full Text PDF

Coping after the COVID-19 pandemic: nurses' learning intent and implications for the workforce and education.

Br J Nurs

January 2025

Professor, Department of Nursing, Beaver College of Health Sciences, Appalachian State University, Boone, North Carolina, USA.

Background/aim: Addressing the critical global shortage of nurses requires an understanding of how a global pandemic reshaped nurses' motivations and intentions toward education. This study aimed to describe COVID-19's impact on nurses' intent to pursue additional education.

Method: This descriptive study, based in North Carolina in the USA, used content analysis with an inductive approach to examine the responses of nurses to one open-ended question in a large quantitative workforce survey: how has COVID-19 influenced your plans for future education? Responses were coded with counts and organised into themes and subthemes.

View Article and Find Full Text PDF

Self-regulation in eHealth: definition, contributing factors, and experiences from blended rehabilitation care.

Disabil Rehabil

January 2025

Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands.

Purpose: eHealth might contribute to changes in roles and responsibilities of patients and healthcare professionals (HCPs), including the patient's potential to enhance self-regulation. The aim of this study was to identify important aspects and experiences of self-regulation and factors that may support self-regulation in blended rehabilitation care.

Materials And Methods: Semi-structured interviews were conducted among HCPs and patients regarding perceptions and experiences with self-regulation in relation to a telerehabilitation portal.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!