Eggs of container-breeding mosquitoes are able to withstand drought conditions as an egg and hatch when submerged. Frequent rainfall can be simulated by frequent submersion, and drought conditions can be simulated by infrequent submersion. We examined the hatch response of Aedes albopictus (Skuse) eggs to simulated drought conditions. Ae. albopictus eggs from a strain originating outside Kobe, Japan, were subjected to one of three treatments; high-frequency hatch stimulation consisting of submerging the eggs in a nutrient broth mixture every 3 d, low-frequency hatch stimulation consisting of submerging the eggs every 7 d, and delayed high-frequency hatch stimulation. Eggs that were subjected to lower-frequency stimulation showed a significant decrease in hatch delay, which was the opposite of the predicted response. This decrease in hatch delay may be an example of hatch plasticity in response to drought conditions. This response could not be explained as a result of the difference in the ages of the eggs on any given stimulus. A decreased hatch delay response to potential drought conditions combined with rapid larval development may enable Ae. albopictus, whose eggs are not as desiccation resistant as some other container-breeding mosquitoes, to survive extended drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/033.046.0406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!