In the formulation of polymer microspheres (MSs) loaded with verapamil hydrochloride (VRP), a low molecular weight ionizable drug, by W/O/W emulsification, the pH of the external aqueous phase proved to be a primary determinant of both IE and drug release behavior. Increasing the pH of the external aqueous phase enhanced IE (approximately 100% at pH 8.4). This was associated with a considerable increase in initial release rate at pH 1.2. Two multivariate methods, factorial analysis (FA) and artificial neural network (ANN), were used to investigate the impact of the combined effect of the external phase pH and other parameters (polymer concentration and initial drug load) on MS characteristics; IE, initial drug release, MS size and yield. FA indicated that the external aqueous phase pH affected all responses, with a particularly strong correlation with IE in addition to a combined synergistic effect with polymer concentration on MS size. ANN showed better internal and external predictive ability of responses compared to FA. The ANN model developed in the study can be successfully used for multivariate modeling of the encapsulation and release of VRP and similar drug salts from hydrophobic polymer MSs prepared by multiple emulsification in addition to other MS characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21753DOI Listing

Publication Analysis

Top Keywords

external aqueous
12
aqueous phase
12
multivariate modeling
8
modeling encapsulation
8
encapsulation release
8
ionizable drug
8
polymer microspheres
8
drug release
8
polymer concentration
8
initial drug
8

Similar Publications

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Pt/IrO enables selective electrochemical C-H chlorination at high current.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.

Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.

View Article and Find Full Text PDF

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

This study describes the use of the emulsion liquid membrane (ELM) technique to recover thorium (Th(IV)) from an aqueous nitrate solution. The components of the ELM were kerosene as a diluent, sorbitan monooleate (span 80) as a surfactant, bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) as an extractant, and HSO solution as a stripping reagent. Th(IV) was more successfully extracted and separated under the following favorable conditions: Cyanex272 concentration of 0.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!