A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolutionary formation of new protein folds is linked to metallic cofactor recruitment. | LitMetric

Evolutionary formation of new protein folds is linked to metallic cofactor recruitment.

Bioessays

Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, P. R. China.

Published: September 2009

To explore whether the generation of new protein folds could be linked to metallic cofactor recruitment, we identified the oldest examples of folds for manganese, iron, zinc, and copper proteins by analyzing their fold-domain mapping patterns. We discovered that the generation of these folds was tightly coupled to corresponding metals. We found that the emerging order for these folds, i.e., manganese and iron protein folds appeared earlier than zinc and copper counterparts, coincides with the putative bioavailability of the corresponding metals in the ancient anoxic ocean. Therefore, we conclude that metallic cofactors, like organic cofactors, play an evolutionary role in the formation of new protein folds. This link could be explained by the emergence of protein structures with novel folds that could fulfill the new protein functions introduced by the metallic cofactors. These findings not only have important implications for understanding the evolutionary mechanisms of protein architectures, but also provide a further interpretation for the evolutionary story of superoxide dismutases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.200800201DOI Listing

Publication Analysis

Top Keywords

protein folds
16
formation protein
8
folds
8
folds linked
8
linked metallic
8
metallic cofactor
8
cofactor recruitment
8
folds manganese
8
manganese iron
8
zinc copper
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!