Drugs mediating myocardial protection.

Eur J Anaesthesiol

Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Published: December 2009

The occurrence of myocardial ischaemia will result in either reversible or irreversible myocardial dysfunction. Even when revascularization is successful, some reperfusion injury may occur that transiently impairs myocardial function. Therefore, treatment should not only be directed towards prompt restoration of myocardial blood flow but measures should also be taken to prevent or alleviate the consequences of myocardial reperfusion injury. Over the years, various strategies have been developed. The present contribution reviews a number of these strategies focusing on pharmacological treatments that have been developed to address myocardial reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/EJA.0b013e32832fad8bDOI Listing

Publication Analysis

Top Keywords

reperfusion injury
12
myocardial reperfusion
8
myocardial
7
drugs mediating
4
mediating myocardial
4
myocardial protection
4
protection occurrence
4
occurrence myocardial
4
myocardial ischaemia
4
ischaemia will
4

Similar Publications

Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.

View Article and Find Full Text PDF

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Ischemia-reperfusion injury is a serious clinical pathology involving multiple organs such as the heart and brain. The injury results from oxidative stress, inflammatory response and cell death triggered by restoring tissue blood flow after ischemia, leading to severe cell and tissue damage. In recent years, the volume-regulated anion channel (VRAC) has gained attention as an important membrane protein complex.

View Article and Find Full Text PDF

Introduction: Cerebral ischemic strokes cause brain damage, primarily through inflammatory factors. One of the regions most affected by middle cerebral artery occlusion (MCAO) is the hippocampus, specifically the CA1 area, which is highly susceptible to ischemia. Previous studies have demonstrated the anti-inflammatory properties of quercetin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!