A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The fusion proteins TEL-PDGFRbeta and FIP1L1-PDGFRalpha escape ubiquitination and degradation. | LitMetric

Background: Chimeric oncogenes encoding constitutively active protein tyrosine kinases are associated with chronic myeloid neoplasms. TEL-PDGFRbeta (TPbeta, also called ETV6-PDGFRB) is a hybrid protein produced by the t(5;12) translocation, FIP1L1-PDGFRalpha (FPalpha) results from a deletion on chromosome 4q12 and ZNF198-FGFR1 is created by the t(8;13) translocation. These fusion proteins are found in patients with myeloid neoplasms associated with eosinophilia. Wild-type receptor tyrosine kinases are efficiently targeted for degradation upon activation, in a process that requires Cbl-mediated monoubiquitination of receptor lysines. Since protein degradation pathways have been identified as useful targets for cancer therapy, the aim of this study was to compare the degradation of hybrid and wild-type receptor tyrosine kinases.

Design And Methods: We used Ba/F3 as a model cell line, as well as leukocytes from two patients, to analyze hybrid protein degradation.

Results: In contrast to the corresponding wild-type receptors, which are quickly degraded upon activation, we observed that TPbeta, FPalpha and the ZNF198-FGFR1 hybrids escaped down-regulation in Ba/F3 cells. The high stability of TPbeta and FPalpha hybrid proteins was confirmed in leukocytes from leukemia patients. Ubiquitination of TPbeta and FPalpha was much reduced compared to that of wild-type receptors, despite marked Cbl phosphorylation in cells expressing hybrid receptors. The fusion of a destabilizing domain to TPbeta induced protein degradation. Instability was reverted by adding the destabilizing domain ligand, Shield1. The destabilization of this modified TPbeta reduced cell transformation and STAT5 activation.

Conclusions: We have shown that chimeric receptor tyrosine kinases escape ubiquitination and down-regulation and that their stabilization is critical to efficient stimulation of cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719031PMC
http://dx.doi.org/10.3324/haematol.2008.001149DOI Listing

Publication Analysis

Top Keywords

tyrosine kinases
12
receptor tyrosine
12
tpbeta fpalpha
12
fusion proteins
8
escape ubiquitination
8
myeloid neoplasms
8
hybrid protein
8
wild-type receptor
8
protein degradation
8
wild-type receptors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!