Bacillus mucilaginosus and Bacillus edaphicus were reclassified based on their 16S rRNA and gyrB gene sequences, DNA-DNA hybridization, fatty acid methyl esters and other taxonomic characteristics. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences indicated that strains of B. mucilaginosus and B. edaphicus were members of the genus Paenibacillus, with over 90.4 % and 70.3 % sequence similarity, respectively. Their DNA G+C contents were 54.5-56.8 mol%. The DNA-DNA relatedness values of B. edaphicus VKPM B-7517(T) with B. mucilaginosus KNP414 and B. mucilaginosus CGMCC 1.236 were 89.2 % and 88.7 %, respectively. The major isoprenoid quinone of B. mucilaginosus and B. edaphicus was MK-7 (94.1-95.7 %). The peptidoglycan type was A1gamma (meso-diaminopimelic acid) and the major polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C(15 : 0), C(16 : 1)omega11c and C(16 : 0). Phenotypic features and fatty acid profiles supported the similarity of B. mucilaginosus and B. edaphicus to Paenibacillus validus CCTCC 95016(T) and confirmed their relationship with members of the genus Paenibacillus. Therefore, it is proposed that Bacillus mucilaginosus and Bacillus edaphicus be transferred to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. (type strain HSCC 1605(T)=VKPM B-7519(T)=VKM B-1480D(T)=CIP 105815(T)=KCTC 3870(T)) and Paenibacillus edaphicus comb. nov. (type strain VKPM B-7517(T)=DSM 12974(T)=CIP 105814(T)), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijs.0.008532-0DOI Listing

Publication Analysis

Top Keywords

genus paenibacillus
16
comb nov
16
bacillus mucilaginosus
12
mucilaginosus bacillus
12
bacillus edaphicus
12
mucilaginosus edaphicus
12
mucilaginosus
10
edaphicus
9
paenibacillus
9
paenibacillus paenibacillus
8

Similar Publications

Plant growth-promoting microorganisms can enhance sulfur uptake and boost crop production. This study was conducted to evaluate the changes in physiology, metabolism, and yield of chickpeas following the application of sulfur and two microbial consortia: (1) Thiobacillus sp., Bacillus subtilis, Paraburkholderia fungorum, and Paenibacillus sp.

View Article and Find Full Text PDF

sp. nov., isolated from surface of the maize () roots in a horticulture field, Hungary.

Int J Syst Evol Microbiol

January 2025

Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary.

A novel Gram-stain-positive, rod-shaped, endospore-forming bacterium with peritrichous flagella, designated as P96 was isolated from the surface of maize roots. Strain P96 grew optimally at 28 °C, pH 7.0.

View Article and Find Full Text PDF

Two strains, M1 and H32 with nitrogen-fixing ability, were isolated from the rhizospheres of different plants. Genome sequence analysis showed that a (trogen ixation) gene cluster composed of nine genes () was conserved in the two strains. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strains M1 and H32 are members of the genus .

View Article and Find Full Text PDF

Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review.

Animals (Basel)

December 2024

Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway.

With the intensification of aquaculture to meet the rising demands of fish and shellfish, disease outbreaks during the larval and adult stages are a major challenge faced by aqua culturists. As the prophylactic use of vaccines and antibiotics has several limitations, research is now focused on sustainable alternatives to vaccines and antibiotics, e.g.

View Article and Find Full Text PDF

Bacterial species adapt to cold environments with diverse molecular mechanisms enabling their growth under low ambient temperature. The emergence of cold-adapted species at macro-evolutionary scale, however, has not been systematically explored. In this study, we performed phylogenetic analysis on the growth temperature traits in the genera that occupy broad environmental and host niches and contain known cold-adapted species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!