Grape stalk is an organic waste produced in great amounts in the industrialization processes of grape. This work presents the results of studies carried out to use this waste as raw material to prepare activated carbon through the physical and chemical route. The physicochemical characterization of this material suggests the presence of unusually high levels of ashes. Metal content was determined and high levels of potassium, sodium, iron, calcium and magnesium in carbonized and raw grape stalk were exhibited. This characteristic made difficult physical activation at high temperatures. A leaching step was included before the activation with steam, and adsorbents with surface areas between 700 and 900 m(2)/g were obtained. Physical activation was also performed at lower temperatures using carbonized grape stalk without leaching, leading to the development of some grade of porosity, with an area of 412 m(2)/g. These results would indicate the catalytic effect of the minerals present in this raw material. Chemical activation using phosphoric acid as activating agent seemed to be a very efficient method as final products with BET areas between 1000 and 1500 m(2)/g were obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.06.095 | DOI Listing |
Foods
November 2024
Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain.
Grape stalks (GSs) from winemaking were submitted to a green process to valorise its lignocellulosic biomass that applied subcritical water extraction (SWE) at 170 °C and 180 °C to obtain active extracts and cellulose-enriched fractions. The sum of the total phenolic content of the soluble extract and the solid residue fractions from the SWE exceeded that of the GS, which suggests the generation of compounds with antioxidant properties through SWE. All SWE fractions showed high antioxidant power.
View Article and Find Full Text PDFWaste Manag
September 2024
Universidad de Castilla La Mancha, Departamento de Química Física, Instituto de Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13005 Ciudad Real, Spain.
This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using HSO, as opposed to a 37 % yield with AlCl·6HO, at 150 °C in only 10 min.
View Article and Find Full Text PDFFoods
May 2024
Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain.
The winemaking process generates an annual global production of about 10 million tons of waste consisting of stalks, skin, and seeds. The possible reutilization of wine pomace is strictly linked to its chemical composition. In this preliminary study, three different Sardinian white grapes (Malvasia, Vermentino and Nasco) grown in the same area were evaluated through a whole wine production chain.
View Article and Find Full Text PDFFood Chem
September 2024
Institute of Food Engineering FoodUPV, Universtitat Politècnica de València, 46022, Valencia, Spain.
In order to valorise winemaking grape stalks, subcritical water extraction at 160 and 180 °C has been carried out to obtain phenolic-rich extracts useful for developing active food packaging materials. Red (R) and white (W) varieties (from Requena, Spain) were used, and thus, four kinds of extracts were obtained. These were characterised as to their composition, thermal stability and antioxidant and antibacterial activity.
View Article and Find Full Text PDFLife (Basel)
March 2024
Faculty of Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania.
Vine-growing for the production of wine is one of the oldest and most important agricultural activities worldwide, but the winemaking process leads to vast amounts of waste. Viticulture and vinification by-products have many bioactive molecules, including polyphenols, prebiotic fibers, organic acids, and minerals. While research on the specific human health effects of grapevine residues (pomace, seeds, barks, stalks, canes, and leaves) is still ongoing, the available data suggest the potential to positively modulate the normal and dysbiotic gut microbiota (GM) using polyphenol-rich extracts obtained from winery by-products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!