Objective: To determine causative mutations and clinical status of 7 previously unreported kindreds with TRMA syndrome, (thiamine-responsive megaloblastic anemia, online Mendelian inheritance in man, no. 249270), a recessive disorder of thiamine transporter Slc19A2.
Study Design: Genomic DNA was purified from blood, and SLC19A2 mutations were characterized by sequencing polymerase chain reaction-amplified coding regions and intron-exon boundaries of all probands. Compound heterozygotes were further analyzed by sequencing parents, or cloning patient genomic DNA, to ascertain that mutations were in trans.
Results: We detected 9 novel SLC19A2 mutations. Of these, 5 were missense, 3 were nonsense, and 1 was insertion. Five patients from 4 kindreds were compound heterozygotes, a finding not reported previously for this disorder, which has mostly been found in consanguineous kindreds.
Conclusion: SLC19A2 mutation sites in TRMA are heterogeneous; with no regional "hot spots." TRMA can be caused by heterozygous compound mutations; in these cases, the disorder is found in outbred populations. To the extent that heterozygous patients were ascertained at older ages, a plausible explanation is that if one or more allele(s) is not null, partial function might be preserved. Phenotypic variability may lead to underdiagnosis or diagnostic delay, as the average time between the onset of symptoms and diagnosis was 8 years in this cohort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858590 | PMC |
http://dx.doi.org/10.1016/j.jpeds.2009.06.017 | DOI Listing |
PLoS One
January 2025
Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).
View Article and Find Full Text PDFClin Genet
January 2025
Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany.
Split-hand/foot malformation syndrome (SHFM) is a congenital limb malformation that is both clinically and genetically heterogeneous. Variants in WNT10B are known to cause an autosomal recessive form of SHFM. Here, we report a patient born to unrelated parents who was found to be a compound heterozygote for missense variants in WNT10B: c.
View Article and Find Full Text PDFClin Oral Implants Res
January 2025
Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Objectives: WNT10A mutations are associated with tooth agenesis. This study aimed to assess the clinical outcomes of dental implants in patients carrying WNT10A mutations with different molecular statuses and phenotypes over a long-term follow-up period.
Materials And Methods: Patients with tooth agenesis were screened by whole-exome sequencing (WES) from January 2010 to September 2023.
Orphanet J Rare Dis
January 2025
The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.
Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.
Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.
Neurodegener Dis Manag
January 2025
Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!