Fission yeast cells lacking the dynamin-related protein (DRP) Vps1 had smaller vacuoles with reduced capacity for both fusion and fission in response to hypotonic and hypertonic conditions respectively. vps1Delta cells showed normal vacuolar protein sorting, actin organisation and endocytosis. Over-expression of vps1 transformed vacuoles from spherical to tubular. Tubule formation was enhanced in fission conditions and required the Rab protein Ypt7. Vacuole tubulation by Vps1 was more extensive in the absence of a second DRP, Dnm1. Both dnm1Delta and the double mutant vps1Delta dnm1Delta showed vacuole fission defects similar to that of vps1Delta. Over-expression of vps1 in dnm1Delta, or of dnm1 in vps1Delta failed to rescue this phenotype. Over-expression of dnm1 in wild-type cells, on the other hand, induced vacuole fission. Our results are consistent with a model of vacuole fission in which Vps1 creates a tubule of an appropriate diameter for subsequent scission by Dnm1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2009.07.008DOI Listing

Publication Analysis

Top Keywords

vacuole fission
16
dynamin-related protein
8
fission
8
fission yeast
8
over-expression vps1
8
vps1
6
vacuole
5
protein vps1
4
vps1 regulates
4
regulates vacuole
4

Similar Publications

An intracellular protozoan, the Apicomplexan parasite () infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication.

View Article and Find Full Text PDF

Purpose: The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia.

Methods: Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method.

View Article and Find Full Text PDF

Background: Mitochondria are highly dynamic organelles that constantly undergo processes of fission and fusion. The changes in mitochondrial dynamics shape the organellar morphology and influence cellular activity regulation. Soft X-ray tomography (SXT) allows for three-dimensional imaging of cellular structures while they remain in their natural, hydrated state, which omits the need for cell fixation and sectioning.

View Article and Find Full Text PDF

Oxidative phosphorylation decline and mitochondrial dynamics disequilibrium are involved in chicken large white follicle atresia.

Theriogenology

January 2025

Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China. Electronic address:

In domestic hens, the atresia of large white follicles (LWFs) directly affects the number of follicles that enter the hierarchical development and ovulation. Figuring out factors responsible for LWFs atresia is helpful to improve egg production of hens. At the LWF stage, yellow yolk begins to be deposited into the follicles via receptor mediated endocytosis, which requires large amounts of ATP.

View Article and Find Full Text PDF

We investigated whether the elimination of two major enzymes responsible for triacylglycerol synthesis altered the structure and physical state of organelle membranes under mild heat shock conditions in the fission yeast, . Our study revealed that key intracellular membrane structures, lipid droplets, vacuoles, the mitochondrial network, and the cortical endoplasmic reticulum were all affected in mutant fission yeast cells under mild heat shock but not under normal growth conditions. We also obtained direct evidence that triacylglycerol-deficient cells were less capable than wild-type cells of adjusting their membrane physical properties during thermal stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!