A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex. | LitMetric

The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi-Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2009.07.021DOI Listing

Publication Analysis

Top Keywords

diurnal rhythm
12
dendritic architecture
12
architecture spine
8
spine density
8
pyramidal neurons
8
infralimbic cortex
8
structural plasticity
8
neurons ilc
8
control rats
8
resting period
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!