Present understanding of IGF-1 as a growth factor mediating integration of nutritional-hormonal interactions indicates that IGF-1 acts in both an endocrine mode on distant targets and an autocrine-paracrine mode on local targets. In the liver, the combined presence of GH, insulin, and critical metabolic fuels such as essential amino acids results in increased levels of IGF-1 messenger RNA, increased production of a high-MW IGF-1 precursor, and increased release of IGF-1 into the circulation, permitting action on distant target tissues bearing specific receptors for IGF-1. The net effect is distant amplification of anabolic hormone action via IGF-1 acting in an endocrine mode. In extrahepatic tissues, both 'general' anabolic hormones (insulin and GH) as well as 'specific' hormones (e.g. gonadotropins) acting on a wide variety of targets (including fibroblasts and chondrocytes as well as granulosa and Leydig cells) promote both local secretion of IGF-1 and an increase in IGF-1 receptors. Local actions of IGF-1 then result in a secondary increase in both hormone receptors and hormone responses. The net effect is local amplification of hormone action via IGF-1 acting as a growth factor in an autocrine-paracrine mode.

Download full-text PDF

Source
http://dx.doi.org/10.1079/pns19900053DOI Listing

Publication Analysis

Top Keywords

igf-1
11
growth factor
8
endocrine mode
8
autocrine-paracrine mode
8
hormone action
8
action igf-1
8
igf-1 acting
8
regulation action
4
action insulin-like
4
insulin-like growth
4

Similar Publications

Purpose: A paradoxical increase in GH after oral glucose load (GH-Par) characterizes about one-third of acromegaly patients and is associated with a better response to first-generation somatostatin receptor ligands (fg-SRLs). Pasireotide is typically considered as a second-/third-line treatment. Here, we investigated the predictive role of GH-Par in pasireotide response and adverse event development.

View Article and Find Full Text PDF

Objectives: The gonadotropin-releasing hormone (GnRH) provocation test is crucial for diagnosing central precocious puberty (CPP). However, due to its invasion and high cost, it is essential to find a simpler biomarker. This study aimed to investigate the feasibility of fasting insulin (FINS) and insulin-like growth factor-1 (IGF-1) as potential biomarkers for diagnosing girls with CPP and to analyze their effects on puberty development.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Objectives: To investigate the effects of selenium on functional and histopathological changes and mRNA expression levels of insulin-like growth factors 1 and 2 (IGF-1 and -2) and aquaporins 4 and 5 (AQP-4 and -5) in 131I-induced damaged rat parotid glands.

Methods: Rats were divided into three groups: iodotherapy-with-selenium, iodotherapy-only, and control. Rats in the iodotherapy-with-selenium group were intragastrically administered 131I on the first day and selenomethionine through drinking water.

View Article and Find Full Text PDF

Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!