Single tiers of silicon nanowires that bridge the gap between the short sidewalls of silicon-on-insulator (SOI) source/drain pads are formed. The formation of a single tier of bridging nanowires is enabled by the attachment of a single tier of Au catalyst nanoparticles to short SOI sidewalls and the subsequent growth of epitaxial nanowires via the vapor-liquid-solid (VLS) process. The growth of unobstructed nanowire material occurs due to the attachment of catalyst nanoparticles on silicon surfaces and the removal of catalyst nanoparticles from the SOI-buried oxide (BOX). Three-terminal current-voltage measurements of the structure using the substrate as a planar backgate after VLS nanowire growth reveal transistor behaviour characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.200900855DOI Listing

Publication Analysis

Top Keywords

catalyst nanoparticles
12
formation single
8
single tiers
8
silicon nanowires
8
single tier
8
tiers bridging
4
bridging silicon
4
nanowires
4
nanowires transistor
4
transistor applications
4

Similar Publications

Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.

View Article and Find Full Text PDF

Well-Defined PtCo@Pt Core-Shell Nanodendrite Electrocatalyst for Highly Durable Oxygen Reduction Reaction.

Small

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.

The rational design of efficient electrocatalysts with controllable structure and composition is crucial for enhancing the lifetime and cost-effectiveness of oxygen reduction reaction (ORR). PtCo nanocrystals have gained attention due to their exceptional activity, yet suffer from stability issues in acidic media. Herein, an active and highly stable electrocatalyst is developed, namely 3D PtCo@Pt core-shell nanodendrites (NDs), which are formed through the self-assembly of small Pt nanoparticles (≈6 nm).

View Article and Find Full Text PDF

Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO (NPs) on multiple endpoints (e.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Iridium single atom catalysts are promising oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane water electrolysis (PEMWE), as they can reduce the reliance on costly Ir in the OER catalysts. However, their practical application is hindered by their limited stability during PEMWE operation. Herein, we report on the activation of Ir-doped CoMnO in acidic electrolyte that leads to enhanced activity and stability in acidic OER for long-term PEMWE operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!