In this study, a HPA3NT3-analog (FKKLKKLFKKILKLK-NH2) peptide was designed. In this analog, two Trp residues (positions 12, 14) were replaced with Leu, and Arg and Asn (positions 3, 13) were replaced with Lys to investigate the role of amino acid substitution and increased cationicity on antimicrobial and hemolytic activities. In fungal and Gram-negative bacterial cells, HPA3NT3-analog activity was unchanged or slightly enhanced when compared to the HPA3NT3 peptide. In addition, a twofold decrease in activity against Gram-positive bacteria was observed. The HPA3NT3-analog also induced less hemolysis (4.2%) than the HPA3NT3 peptide (71%) at 200 microM. Circular dichroism (CD) spectra revealed that the HPA3NT3-analog peptide had an unordered structure in buffer and egg yolk L-2-phosphatidyl choline (EYPC), but adapted an alpha-helical conformation in 50% 2,2,2-trifluoroethanol (TFE) and negatively charged egg yolk L-2-phosphatidyl glycerol (EYPG), while the parent peptide showed an ordered structure in the EYPC. Additionally, the HPA3NT3-analog peptide induced the leakage of calcein from egg yolk L-2-phosphatidyl ethanolamine (EYPE)/EYPG (7:3 w/w) large unilamellar vesicles (LUVs); however, the activity was slightly weaker than that of the HPA3NT3 peptide. The molecular dynamics (MD) structures revealed that the amino acid substitutions induced a significant variation in peptide structure. These results suggest that the substitutions of Arg and Asn with Lys and two Trp with Leu resulted in small changes in HPA3NT3-analog activity and significant decreases in hemolytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.1155DOI Listing

Publication Analysis

Top Keywords

hpa3nt3 peptide
12
egg yolk
12
yolk l-2-phosphatidyl
12
peptide
9
positions replaced
8
arg asn
8
amino acid
8
hpa3nt3-analog activity
8
hpa3nt3-analog peptide
8
activity
6

Similar Publications

Novel antibiotic drugs are urgently needed because of the increase in drug-resistant bacteria. The use of antimicrobial peptides has been suggested to replace antibiotics as they have strong antimicrobial activity and can be extracted from living organisms such as insects, marine organisms, and mammals. HPA3NT3-A2 ([Ala] HPA3NT3) is an antimicrobial peptide that is an analogue of the HP (2-20) peptide derived from ribosomal protein L1.

View Article and Find Full Text PDF

Antifungal Effect of A Chimeric Peptide Hn-Mc against Pathogenic Fungal Strains.

Antibiotics (Basel)

July 2020

Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Korea.

It is difficult to identify new antifungal agents because of their eukaryotic nature. However, antimicrobial peptides can well differentiate among cell types owing to their variable amino acid content. This study aimed to investigate the antifungal effect of Hn-Mc, a chimeric peptide comprised of the N-terminus of HPA3NT3 and the C-terminus of melittin.

View Article and Find Full Text PDF

Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2.

Environ Sci Pollut Res Int

November 2019

Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Korea.

Microcystis aeruginosa, a species of freshwater cyanobacteria, is known to be one of the dominant species causing cyanobacterial harmful algal blooms (CyanoHABs). M. aeruginosa blooms have the potential to produce neurotoxins and peptide hepatotoxins, such as microcystins and lipopolysaccharides (LPSs).

View Article and Find Full Text PDF

Bacterial biofilms formed through secretion of extracellular polymeric substances (EPS) have been implicated in many serious infections and can increase antibiotic resistance by a factor of more than 1000. Here, we examined the abilities of the antimicrobial peptide HPA3NT3-A2 to inhibit and reduce biofilm formation, eliminate EPS, and suppress inflammation in mice infected with clinical isolates of drug-resistant Pseudomonas aeruginosa strains. HPA3NT3-A2 was developed from a desirable analogue peptide, HPA3NT3, derived from residues 2-20 of the Helicobacter pylori ribosomal protein L1.

View Article and Find Full Text PDF

Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

Biochem Biophys Res Commun

July 2015

Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea. Electronic address:

An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!