A common gene deletion or mutation of delta-sarcoglycan (delta-SG) in dystrophin-related proteins (DRPs) is identified in both TO-2 strain hamsters and human families with dilated cardiomyopathy. We have succeeded in the long-lasting in vivo supplementation of a normal delta-SG gene by recombinant adeno-associated virus vector, restoration of the morphological and functional degeneration, and improvement in the prognosis of the TO-2 hamster. To evaluate the integrity of the sarcolemma (SL) and the subsequent change of organelles in cardiomyocytes of the TO-2 strain hamster, we examined electron microscopy (EM) images focusing on the sarcolemmal stability at the end stage of heart failure. Two types of sarcolemmal degradation were detected: the widened and locally thickened SL, and blurred and discontinuous SL. Bizarrely formed mitochondria of varying sizes were also observed. Immuno-EM revealed clear expression of dystrophin in the SL and intense expression at the costamere as well as at the T-tubules in the control F1B strain hearts, but a patchy deposition of dystrophin was observed along the SL without the transgene of delta-SG. In contrast to the previous reports that dystrophin's integrity was intact, the present results suggest that the gene deletion of delta-SG and the loss of delta-SG protein in the SL cardioselectively cause the morphological and functional deterioration of dystrophin and the resultant instability of the SL. The sarcolemmal fragility may be similar to Duchenne-type progressive muscular dystrophy in skeletal muscle. In addition to the mechanical role, another aspect of DRPs for the intracellular signal transmission is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716201 | PMC |
Biofabrication
September 2023
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain.
Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction.
View Article and Find Full Text PDFCells
April 2022
Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes.
View Article and Find Full Text PDFCancer Res
May 2020
Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida.
Skeletal muscle wasting is a devastating consequence of cancer that contributes to increased complications and poor survival, but is not well understood at the molecular level. Herein, we investigated the role of Myocilin (Myoc), a skeletal muscle hypertrophy-promoting protein that we showed is downregulated in multiple mouse models of cancer cachexia. Loss of Myoc alone was sufficient to induce phenotypes identified in mouse models of cancer cachexia, including muscle fiber atrophy, sarcolemmal fragility, and impaired muscle regeneration.
View Article and Find Full Text PDFMol Ther
February 2020
Sanofi, Framingham, MA 01701-9322, USA.
Patients with α-dystroglycanopathies, a subgroup of rare congenital muscular dystrophies, present with a spectrum of clinical manifestations that includes muscular dystrophy as well as CNS and ocular abnormalities. Although patients with α-dystroglycanopathies are genetically heterogeneous, they share a common defect of aberrant post-translational glycosylation modification of the dystroglycan alpha-subunit, which renders it defective in binding to several extracellular ligands such as laminin-211 in skeletal muscles, agrin in neuromuscular junctions, neurexin in the CNS, and pikachurin in the eye, leading to various symptoms. The genetic heterogeneity associated with the development of α-dystroglycanopathies poses significant challenges to developing a generalized treatment to address the spectrum of genetic defects.
View Article and Find Full Text PDFDis Model Mech
November 2019
Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the γ-sarcoglycan () gene. The most common mutation is a single nucleotide deletion from a stretch of five thymine residues in exon 6 (521ΔT). This founder mutation disrupts the transcript reading frame, abolishing protein expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!