Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000230807 | DOI Listing |
Sensors (Basel)
December 2024
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia.
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Design and Innovation, Tongji University, Shanghai 200092, China.
Artificial intelligence (AI) systems are widely applied in various industries and everyday life, particularly in fields such as virtual assistants, healthcare, and education. However, this paper highlights that existing research has often overlooked the philosophical and media aspects. To address this, we developed an interactive system called "Human Nature Test".
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK.
Attention is one of many human cognitive functions that are essential in everyday life. Given our limited processing capacity, attention helps us focus only on what matters. Focusing attention on one speaker in an environment with many speakers is a critical ability of the human auditory system.
View Article and Find Full Text PDFBrain Sci
December 2024
Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, 1083 Budapest, Hungary.
: Accurately classifying Electroencephalography (EEG) signals is essential for the effective operation of Brain-Computer Interfaces (BCI), which is needed for reliable neurorehabilitation applications. However, many factors in the processing pipeline can influence classification performance. The objective of this study is to assess the effects of different processing steps on classification accuracy in EEG-based BCI systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!