Alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid; lipoic acid) is an endogenous compound used to treat pain disorders in humans, but its mechanisms of analgesic action are not well understood. Here, we show that lipoic acid selectively inhibited native Ca(V)3.2 T-type calcium currents (T-currents) and diminished T-channel-dependent cellular excitability in acutely isolated rat sensory neurons. Lipoic acid locally injected into peripheral receptive fields of pain-sensing sensory neurons (nociceptors) in vivo decreased sensitivity to noxious thermal and mechanical stimuli in wild-type but not Ca(V)3.2 knock-out mice. Ensuing molecular studies demonstrated that lipoic acid inhibited recombinant Ca(V)3.2 channels heterologously expressed in human embryonic kidney 293 cells by oxidating specific thiol residues on the cytoplasmic face of the channel. This study provides the first mechanistic demonstration of a nociceptive ion channel modulation that may contribute to the documented analgesic properties of lipoic acid in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073510PMC
http://dx.doi.org/10.1523/JNEUROSCI.5803-08.2009DOI Listing

Publication Analysis

Top Keywords

lipoic acid
24
acid
8
t-type calcium
8
sensory neurons
8
lipoic
6
molecular mechanisms
4
mechanisms lipoic
4
acid modulation
4
modulation t-type
4
calcium channels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!