Iron deficiency (ID) is the most prevalent worldwide nutritional deficiency. Groups at risk of developing ID anemia are infants and pregnant women, even in industrialized countries. Our goal in this study was to evaluate the long-term consequences of maternal ID on the offspring's fatty acid and eicosanoid metabolism, behavior, and spatial memory. Female guinea pigs consumed iron-sufficient (IS) and -deficient (ID) diets for 14 d before mating and throughout pregnancy and lactation. Dietary iron restriction resulted in ID in pregnant females. On postnatal d 9, all offspring (ID and IS) were weaned to the IS diet and at 42 d, all offspring were iron replete. Locomotion was tested in pups on postnatal d 24 and 40 and spatial memory from d 25 to 40. Pups from the ID group were significantly more active in the open field at both times of testing, whereas spatial memory, tested in a Morris water maze, was comparable in both groups. On postnatal d 42, liver, RBC, and brain fatty acid composition were measured. Dihomogammalinolenic [20:3(n-6)], docosapentaenoic [22:5(n-3)], and docosahexaenoic [22:6(n-3)] acid contents were significantly higher in brain phospholipids of offspring born to ID dams. Prostaglandin E(2) and F(2alpha) concentrations were also significantly higher in brains of offspring born to ID dams. This demonstrates that moderate ID during gestation and lactation results in alterations of brain fatty acid and eicosanoid metabolism and perturbation in behavior in adult offspring.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.109.106013DOI Listing

Publication Analysis

Top Keywords

fatty acid
16
acid eicosanoid
12
eicosanoid metabolism
12
spatial memory
12
iron deficiency
8
offspring iron
8
brain fatty
8
offspring born
8
born dams
8
offspring
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!