Among the integrative gene therapy vectors developed to date, human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) are distinguished by their capacity to infect both dividing and non-dividing cells. Recombinant LV particles contain viral proteins necessary for their packaging, infectious and integrating functions. Like the parental HIV-1 virus they are able to acquire various cellular proteins, but the number and localisation of these proteins are poorly characterised. In the present study we used 2-DE followed by MALDI-TOF to quantify the protein content of several types of vesicular stomatitis virus G-pseudotyped LV including those that were extensively purified in the perspective of clinical gene therapy studies. A proteinase K treatment was used to distinguish between cellular proteins incorporated into virions (I-proteins) and those co-purified with vectors (C-proteins). We found 10 C-proteins and 18 I-proteins associated with LV. Copy numbers for these core I-proteins varied from 5 (AIP-1/ALIX) to 280 (Cyclophilin A) per vector particle. Three novel I-proteins, guanine nucleotide-binding protein 2, L-lactate dehydrogenase B chain and hnRNP core protein A1, were found. This study defines for the first time, the protein stoichiometry of infectious HIV-1-derived LV particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200800747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!