We have used X-band ESEEM to study the reduced [2Fe-2S] cluster in adrenodoxin and Arthrospira platensis ferredoxin. By use of a 2D approach (HYSCORE), we have shown that the cluster is involved in weak magnetic interactions with several nitrogens in each protein. Despite substantial differences in the shape and orientational dependence of individual cross-peaks, the major spectral features in both proteins are attributable to two peptide nitrogens (N1 and N2) with similar hyperfine couplings approximately 1.1 and approximately 0.70 MHz. The couplings determined represent a small fraction (0.0003-0.0005) of the unpaired spin density of the reduced cluster transferred to these nitrogens over H-bond bridges or the covalent bonds of cysteine ligands. Simulation of the HYSCORE spectra has allowed us to estimate the orientation of the nuclear quadrupole tensors of N1 and N2 in the g-tensor coordinate system. The most likely candidates for the role of N1 and N2 have been identified in the protein environment by comparing magnetic-resonance data with crystallographic structures of the oxidized proteins. A possible influence of redox-linked structural changes on ESEEM data is analyzed using available structures for related proteins in two redox states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773023 | PMC |
http://dx.doi.org/10.1039/b904597j | DOI Listing |
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFPharmazie
December 2024
Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan.
This study aimed to determine the risk of emergency admission by ambulance in patients taking potentially inappropriate medications (PIMs). We included 273,932 patients aged over 75 years of age admitted between January 1, 2019, and December 31, 2019, using the Japan Medical Data Center medical insurance database containing anonymized patient data. We excluded patients without a history of admission.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Institute of Avian Research, Wilhelmshaven, Germany.
Whilst efficient movement through space is thought to increase the fitness of long-distance migrants, evidence that selection acts upon such traits remains elusive. Here, using 228 migratory tracks collected from 102 adult breeding common terns (Sterna hirundo) aged 3-22 years, we find evidence that older terns navigate more efficiently than younger terns and that efficient navigation leads to a reduced migration duration and earlier arrival at the breeding and wintering grounds. We additionally find that the age-specificity of navigational efficiency in adult breeding birds cannot be explained by within-individual change with age (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!