A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic nuclear polarization of water by a nitroxide radical: rigorous treatment of the electron spin saturation and comparison with experiments at 9.2 Tesla. | LitMetric

The interaction between nuclear and electronic spins is of interest for structural characterization of biomolecules and biomedical imaging based on nuclear magnetic resonance. The polarization of the nuclear spins can be increased significantly if the electron spin polarization is kept out of equilibrium. We employ semiclassical relaxation theory to analyze the electronic polarization of the two-spin system characteristic of nitroxide radicals. Atomistic molecular dynamics simulations of the nitroxide TEMPOL in water are performed to account for the effects of tumbling and spin-rotation coupling on the spin-spin and spin-lattice relaxation times. Concentration effects on the electron saturation are introduced by allowing for Heisenberg spin exchange between two nitroxides. Polarization enhancement profiles, calculated from the computed saturation, are directly compared with liquid-state dynamic nuclear polarization experiments conducted at 260 GHz/400 MHz. The contribution of the separate hyperfine lines to the saturation can be easily disentangled using the developed formalism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b906719cDOI Listing

Publication Analysis

Top Keywords

dynamic nuclear
8
nuclear polarization
8
electron spin
8
polarization
6
polarization water
4
water nitroxide
4
nitroxide radical
4
radical rigorous
4
rigorous treatment
4
treatment electron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!