AI Article Synopsis

  • Neurofibromatosis type 1 (NF1) is linked to mutations in the NF1 gene, with variability in symptoms possibly influenced by 'modifiers.'
  • A study found that while mismatch repair genes' promoters were generally unmethylated in NF1 patients, the MSH2 promoter showed significant methylation, especially correlated with a higher number of cutaneous neurofibromas.
  • The results suggest that MSH2 methylation might impact mismatch repair capacity and contribute to the variability in NF1 symptoms, although further research is needed to explore its role in different cell types.

Article Abstract

Neurofibromatosis type 1 (NF1) is caused by NF1 gene mutations. The phenotype is highly variable, with 'modifiers' being discussed as potential determinants. Mismatch repair deficiency was shown to cause NF1 mutations, but constitutional mutation of mismatch repair genes was identified only once in a NF1 patient. We aimed to analyze whether DNA methylation of mismatch repair gene promoters, known to lead to transcriptional silencing, is associated with increased tumor load in NF1 defined by the number of cutaneous neurofibromas. Leukocyte DNA of 79 controls and 79 NF1 patients was investigated for methylation of mismatch repair genes MLH1, MSH2, MSH6, and PMS2 by methylation-specific PCR and pyrosequencing. MLH1, MSH6, and PMS2 promoters were not methylated. By contrast, we found promoter methylation of MSH2 with a higher rate of methylation in NF1 patients compared with controls. Furthermore, when comparing NF1 patients with a low vs those with a high number of cutaneous neurofibromas, MSH2 promoter methylation was significantly different. In patients with a high tumor burden, methylation of two (out of six) CpGs was enhanced. This finding was not confounded by age. In conclusion, enhanced methylation involving transcription start points of mismatch repair genes, such as MSH2 in NF1, has not been described so far. Methylation-induced variability of MSH2 gene expression may lead to variable mismatch repair capacity. Our results may point toward a role of MSH2 as a modifier for NF1, although the amount of DNA methylation and subsequent gene expression in other cell types of NF1 patients needs to be elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987165PMC
http://dx.doi.org/10.1038/ejhg.2009.129DOI Listing

Publication Analysis

Top Keywords

mismatch repair
24
nf1 patients
20
promoter methylation
12
nf1
12
repair genes
12
methylation
9
msh2 promoter
8
neurofibromatosis type
8
type nf1
8
dna methylation
8

Similar Publications

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Objective: No biomarkers are available to predict treatment response in patients with endometrial cancers who undergo fertility-sparing treatment. Therefore, we aimed to evaluate the prognostic role of molecular classification.

Methods: Patients with endometrial cancer who underwent fertility-sparing treatment with progestins between 2005 and 2021 were retrospectively identified.

View Article and Find Full Text PDF

Objective: Endometrial cancers can be classified into 4 molecular sub-groups: (1) POLE mutated (POLEmut), (2) mismatch repair deficiency/microsatellite-instable (MMRd/MSI-H), (3) TP53-mutant or p53 abnormal (p53abn), and (4) no specific mutational profile (NSMP). Although molecular classification is increasingly applied in oncology, its role in guiding fertility-sparing treatments for endometrial cancer remains unclear. This study examines the prognostic role of molecular classification in fertility-sparing treatment and its potential to guide treatment decisions.

View Article and Find Full Text PDF

Clinicopathologic stratification demonstrates survival differences between endometrial carcinomas with mismatch repair deficiency and no specific molecular profile: a cohort study.

Int J Gynecol Cancer

January 2025

Helsinki University Hospital and University of Helsinki, Department of Obstetrics and Gynecology, Helsinki, Finland; University of Helsinki, Faculty of Medicine, Helsinki University Hospital and Research Program in Applied Tumor Genomics, Department of Pathology, Helsinki, Finland.

Objective: Endometrial carcinomas with mismatch repair deficiency (MMRd) and no specific molecular profile (NSMP) are considered to have intermediate prognoses. However, potential prognostic differences between these molecular subgroups remain unclear due to the lack of standardized control for clinicopathologic factors. This study aims to evaluate outcomes of MMRd and NSMP endometrial carcinomas across guideline-based clinicopathologic risk groups.

View Article and Find Full Text PDF

The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies.

Front Immunol

January 2025

Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!