Introduction: Perhaps the major challenge in developing more effective therapeutic strategies for the treatment of breast cancer patients is confronting the heterogeneity of the disease, recognizing that breast cancer is not one disease but multiple disorders with distinct underlying mechanisms. Gene-expression profiling studies have been used to dissect this complexity, and our previous studies identified a series of intrinsic subtypes of breast cancer that define distinct populations of patients with respect to survival. Additional work has also used signatures of oncogenic pathway deregulation to dissect breast cancer heterogeneity as well as to suggest therapeutic opportunities linked to pathway activation.

Methods: We used genomic analyses to identify relations between breast cancer subtypes, pathway deregulation, and drug sensitivity. For these studies, we use three independent breast cancer gene-expression data sets to measure an individual tumor phenotype. Correlation between pathway status and subtype are examined and linked to predictions for response to conventional chemotherapies.

Results: We reveal patterns of pathway activation characteristic of each molecular breast cancer subtype, including within the more aggressive subtypes in which novel therapeutic opportunities are critically needed. Whereas some oncogenic pathways have high correlations to breast cancer subtype (RAS, CTNNB1, p53, HER1), others have high variability of activity within a specific subtype (MYC, E2F3, SRC), reflecting biology independent of common clinical factors. Additionally, we combined these analyses with predictions of sensitivity to commonly used cytotoxic chemotherapies to provide additional opportunities for therapeutics specific to the intrinsic subtype that might be better aligned with the characteristics of the individual patient.

Conclusions: Genomic analyses can be used to dissect the heterogeneity of breast cancer. We use an integrated analysis of breast cancer that combines independent methods of genomic analyses to highlight the complexity of signaling pathways underlying different breast cancer phenotypes and to identify optimal therapeutic opportunities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750116PMC
http://dx.doi.org/10.1186/bcr2344DOI Listing

Publication Analysis

Top Keywords

breast cancer
48
therapeutic opportunities
16
breast
12
cancer
12
genomic analyses
12
novel therapeutic
8
pathway deregulation
8
cancer subtype
8
therapeutic
5
opportunities
5

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Socio-economic inequalities in second primary cancer incidence: A competing risks analysis of women with breast cancer in England between 2000 and 2018.

Int J Cancer

January 2025

Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.

We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!