The neuropeptides arginine vasopressin (AVP) and oxytocin (OT) are key modulators of vertebrate sociality. Although some general behavioral functions of AVP and OT are broadly conserved, the detailed consequences of peptide release seem to be regulated by species-specific patterns of receptor distribution. We used autoradiography to characterize central vasopressin 1a receptor (V1aR) and OT receptor (OTR) distributions in two species of singing mice, ecologically specialized Central American rodents with a highly developed form of vocal communication. While both species exhibited high V1aR binding in the auditory thalamus (medial geniculate), binding in structures involved in vocal production (periaqueductal gray and anterior hypothalamus) was significantly higher in the more vocal species, Scotinomys teguina. In S. xerampelinus, receptor binding was significantly higher in a suite of interconnected structures implicated in social and spatial memory, including OTR in the hippocampus and medial amygdala, and V1aR in the anterior and laterodorsal thalamus. This pattern is concordant with species differences in population density and social spacing, which should favor enhanced sociospatial memory in S. xerampelinus. We propose that V1aR and OTR distributions in singing mice support an integral role for the AVP/OT system in several aspects of sociality, including vocal communication and sociospatial memory.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.22116DOI Listing

Publication Analysis

Top Keywords

singing mice
12
central vasopressin
8
distributions species
8
species singing
8
otr distributions
8
vocal communication
8
sociospatial memory
8
receptor
5
species
5
vasopressin oxytocin
4

Similar Publications

Acoustic displays are conspicuous behaviors common across diverse animal taxa. They have long been studied in behavioral ecology, evolutionary biology, and neuroscience. Most of these investigations, however, have focused on male display.

View Article and Find Full Text PDF

Neocortical activity is thought to mediate voluntary control over vocal production, but the underlying neural mechanisms remain unclear. In a highly vocal rodent, the male Alston's singing mouse, we investigate neural dynamics in the orofacial motor cortex (OMC), a structure critical for vocal behavior. We first describe neural activity that is modulated by component notes (~100 ms), probably representing sensory feedback.

View Article and Find Full Text PDF

Vocal display behaviours are common throughout the animal kingdom, play important roles in both courtship and aggression, and are frequent subjects of behavioural research. Although females of many species vocalize, an overwhelming fraction of behavioural research has focused on male display. We investigated vocal display behaviours in female singing mice (), small muroid rodents in which both sexes produce songs consisting of trills of rapid, downward frequency sweeps.

View Article and Find Full Text PDF

Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping. The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Background: Developing genomic resources for a diverse range of species is an important step towards understanding the mechanisms underlying complex traits. Specifically, organisms that exhibit unique and accessible phenotypes-of-interest allow researchers to address questions that may be ill-suited to traditional model organisms. We sequenced the genome and transcriptome of Alston's singing mouse (Scotinomys teguina), an emerging model for social cognition and vocal communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!