A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electroactive linear-hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s. | LitMetric

Electroactive linear-hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s.

Chemistry

Institut für Organische Chemie-Makromolekulare Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany.

Published: September 2009

A convenient two-step protocol is presented for synthesis of linear-hyperbranched diblock copolymers consisting of a linear, organometallic poly(ferrocenylsilane) (PFS) block and hyperbranched poly(carbosilane) (hbPCS) segments. Linear PFS diblock copolymers were synthesized through photolytic ring-opening polymerization of dimethyl[1]silaferrocenophane as the first block and methylvinyl[1]silaferrocenophane as the second. These block copolymers served as polyfunctional cores in a subsequent hydrosilylation polyaddition of different silane-based AB(2) monomers. Three AB(2) monomers (methyldiallylsilane; methyldiundecenylsilane, and ferrocenyldiallylsilane) were investigated; they introduced structural diversity to the hyperbranched block and showed variable reactivity for the hydrosilylation reaction. In the case with the additional ferrocene moiety in the ferrocenyldiallylsilane monomer, an electroactive hyperbranched block was generated. No slow monomer addition was necessary for molecular-weight control of the hyperbranching polyaddition, as the core had much higher functionality and reactivity than the carbosilane monomers. Different block ratios were targeted and hybrid block copolymers with narrow polydispersity (<1.2) were obtained. All the resulting polymers were investigated and characterized by size exclusion chromatography, NMR spectroscopy, cyclic voltammetry, and TEM, and exhibited strongly anisotropic aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200900666DOI Listing

Publication Analysis

Top Keywords

block copolymers
12
block
8
diblock copolymers
8
ab2 monomers
8
hyperbranched block
8
copolymers
5
electroactive linear-hyperbranched
4
linear-hyperbranched block
4
copolymers based
4
based linear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!